Rigidity on horocycles and hypercycles of ℍ² (2024)

Cheikh Lo, Abdoul Karim Sane

(Date: May 26, 2024)

Abstract.

We show that a bijection f:22:𝑓superscript2superscript2f:\mathbb{H}^{2}\rightarrow\mathbb{H}^{2}italic_f : blackboard_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT → blackboard_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT of the hyperbolic plane that sends horocycles to horocycles (respectively hypercycles to hypercycles) is an isometry. This extends a previous result of J. Jeffers on geodesics to all curves with constant curvature in 2superscript2\mathbb{H}^{2}blackboard_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT. We go beyond by showing that every abstract automorphism of the geodesic graph (respectively horocycles and hypercycles graphs) is induced by an earthquake map (respectively an isometry) of 2superscript2\mathbb{H}^{2}blackboard_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT. This shadowed the difference between the geometry of geodesics and that of horocycles/hypercycles.

1. Introduction

In this article, we prove two kinds of results. The first one is inspired by works of Jeffers [4] where he showed, among many other similar results, that geodesic-preserving bijections of the hyperbolic plane 2superscript2\mathbb{H}^{2}blackboard_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT are isometries. The second one is about the automorphisms of the graph associated to objects on a given geometry: an Ivanov-like theorem.

Jeffers-type results:

In Lost theorem of geometry [4], J. Jeffers showed that geodesic-preserving bijections of 2superscript2\mathbb{H}^{2}blackboard_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT (respectively 2superscript2\mathbb{R}^{2}blackboard_R start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT) are isometries (respectively affine map). This raises the question of finding the geometries that have this kind of results. Let G𝐺Gitalic_G be a group and X𝑋Xitalic_X be a set with a G𝐺Gitalic_G-action; we say that X𝑋Xitalic_X is a G𝐺Gitalic_G-geometry in the sense of Thurston. A set 𝒪𝒪\mathcal{O}caligraphic_O of object in X𝑋Xitalic_X stable under the action of G𝐺Gitalic_G is a set of G𝐺Gitalic_G-geometric object. For instance when X=2𝑋superscript2X=\mathbb{H}^{2}italic_X = blackboard_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT and G𝐺Gitalic_G is the group of Möbius transformation, one can choose 𝒪𝒪\mathcal{O}caligraphic_O to be the set of all geodesics.

Question 1.1.

For which pairs [(X,G),𝒪]𝑋𝐺𝒪[(X,G),\mathcal{O}][ ( italic_X , italic_G ) , caligraphic_O ], where X𝑋Xitalic_X is a G𝐺Gitalic_G-geometry and 𝒪𝒪\mathcal{O}caligraphic_O is a set of geometric objects on X𝑋Xitalic_X, we have a Jeffers-like result? In other words, every bijection f:XX:𝑓𝑋𝑋f:X\rightarrow Xitalic_f : italic_X → italic_X preserving elements of 𝒪𝒪\mathcal{O}caligraphic_O is an element of G𝐺Gitalic_G.

Aside from well-known geometric objects on 2superscript2\mathbb{H}^{2}blackboard_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT like geodesics and hyperbolic circles, we also have horocycles (respectively hypercycles) which correspond to orbit flows of parabolic isometries (respectively hyperbolic isometries); see [1].

In this article we first extend Jeffers result to the family of horocycles. Our theorem is:

Theorem A.

Let f:22:𝑓superscript2superscript2f:\mathbb{H}^{2}\rightarrow\mathbb{H}^{2}italic_f : blackboard_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT → blackboard_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT be a bijection that sends horocycles to horocycles. Then, f𝑓fitalic_f is an isometry.

We also prove a similar result for hypercycles. We recall that by definition, points on a hypercycle are at the same distance to a given geodesic and this property characterizes hypercycles.

Theorem B.

Let f:22:𝑓superscript2superscript2f:\mathbb{H}^{2}\rightarrow\mathbb{H}^{2}italic_f : blackboard_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT → blackboard_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT be a bijection that sends hypercycles to hypercycles. Then, f𝑓fitalic_f is an isometry.

Since geodesics (respectively circles, horocycles and hypercycles) have constant curvature r=0𝑟0r=0italic_r = 0 (respectively r(1,+)𝑟1r\in(1,+\infty)italic_r ∈ ( 1 , + ∞ ), r=1𝑟1r=1italic_r = 1 and r(0,1)𝑟01r\in(0,1)italic_r ∈ ( 0 , 1 )), our theorem together with J. Jeffers theorems answer 1.1 for all curves with constant curvature in 2superscript2\mathbb{H}^{2}blackboard_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT. The main idea that is used to prove these results is to show that postcomposing a given geodesic-preserving bijection (respectively circle-preserving, horocycle-preserving, hypercycle-preserving) leads to the identity map. One of the major obstacles we overcame in our proof of A and B is that horocycles and hypercycles are not completly determined by their endpoints; which was central in the geodesic case.Another contrast between geodesics/circles and horocycles/hypercycles is that some of the results proved in [4] are not true for horocycles. For instance a bijection f𝑓fitalic_f on the set 𝒞𝒞\mathcal{C}caligraphic_C of all circles in 2superscript2\mathbb{H}^{2}blackboard_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT that preserves inclusion of circles, induces a bijection of 2superscript2\mathbb{H}^{2}blackboard_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT that sends circles to circles; thus f𝑓fitalic_f is induced by a Möbius transformation using Theorem 5.1 in [4]. It contrasts with the situation where we consider the set 𝒪𝒪\mathcal{HO}caligraphic_H caligraphic_O of all horocylces of 2superscript2\mathbb{H}^{2}blackboard_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT endowed with the partial order induced by inclusion:

h1h2if the disk bounded byh2containsh1.subscript1subscript2if the disk bounded bysubscript2containssubscript1h_{1}\leq h_{2}\;\;\mbox{if the disk bounded by}\;h_{2}\;\mbox{contains}\;h_{1}.italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ≤ italic_h start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT if the disk bounded by italic_h start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT contains italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT .(1)

In particular h1h2subscript1subscript2h_{1}\leq h_{2}italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ≤ italic_h start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT implies that h1subscript1h_{1}italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and h2subscript2h_{2}italic_h start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT have the same center in 2superscript2\mathbb{H}^{2}blackboard_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT; the center of a horocycle hhitalic_h referred to the unique point of h2superscript2h\cap\partial\mathbb{H}^{2}italic_h ∩ ∂ blackboard_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT.Here is a counter-example of a map on the set of all horocycles that preserves inclusion without being an isometry. Let 𝒪(p)𝒪𝑝\mathcal{HO}(p)caligraphic_H caligraphic_O ( italic_p ) denotes the set of all horocycles centered at p𝑝pitalic_p. We denote by h(p,r)𝑝𝑟h(p,r)italic_h ( italic_p , italic_r ) the horocycle centered at p𝑝pitalic_p with Euclidean radius equal r𝑟ritalic_r (when p=𝑝p=\inftyitalic_p = ∞, h(p,r)𝑝𝑟h(p,r)italic_h ( italic_p , italic_r ) is a horizontal line and r𝑟ritalic_r is the imaginary part of all its points). Now, let σp,q:𝒪𝒪:subscript𝜎𝑝𝑞𝒪𝒪\sigma_{p,q}:\mathcal{HO}\rightarrow\mathcal{HO}italic_σ start_POSTSUBSCRIPT italic_p , italic_q end_POSTSUBSCRIPT : caligraphic_H caligraphic_O → caligraphic_H caligraphic_O be the map defined by σp,q(h(p,r))=h(q,r),σp,q(h(q,r))=h(p,r)formulae-sequencesubscript𝜎𝑝𝑞𝑝𝑟𝑞𝑟subscript𝜎𝑝𝑞𝑞𝑟𝑝𝑟\sigma_{p,q}(h(p,r))=h(q,r),\sigma_{p,q}(h(q,r))=h(p,r)italic_σ start_POSTSUBSCRIPT italic_p , italic_q end_POSTSUBSCRIPT ( italic_h ( italic_p , italic_r ) ) = italic_h ( italic_q , italic_r ) , italic_σ start_POSTSUBSCRIPT italic_p , italic_q end_POSTSUBSCRIPT ( italic_h ( italic_q , italic_r ) ) = italic_h ( italic_p , italic_r ) and σp,q(h(x,r))=h(x,r)subscript𝜎𝑝𝑞𝑥𝑟𝑥𝑟\sigma_{p,q}(h(x,r))=h(x,r)italic_σ start_POSTSUBSCRIPT italic_p , italic_q end_POSTSUBSCRIPT ( italic_h ( italic_x , italic_r ) ) = italic_h ( italic_x , italic_r ) for any x{p,q}𝑥𝑝𝑞x\in\mathbb{R}-\{p,q\}italic_x ∈ blackboard_R - { italic_p , italic_q }. One can see that σp,qsubscript𝜎𝑝𝑞\sigma_{p,q}italic_σ start_POSTSUBSCRIPT italic_p , italic_q end_POSTSUBSCRIPT is a bijection that preserves the order while σp,qsubscript𝜎𝑝𝑞\sigma_{p,q}italic_σ start_POSTSUBSCRIPT italic_p , italic_q end_POSTSUBSCRIPT is not induced by an isometry since its restriction to 2superscript2\partial\mathbb{H}^{2}∂ blackboard_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT is not continuous. In general, any bijection σ𝜎\sigmaitalic_σ of 2superscript2\partial\mathbb{H}^{2}∂ blackboard_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT induces a such map on 𝒪𝒪\mathcal{HO}caligraphic_H caligraphic_O.

Ivanov-like results:

These results fit into many others and follow the idea that geometry can be encoded by a group action. On the other hand, Jeffers result on geodesics together with our results have a stronger version which can be stated as a Ivanov-like theorem (see [5] for survey on Ivanov metaconjecture). To do so, let 𝒦geodsubscript𝒦𝑔𝑒𝑜𝑑\mathcal{K}_{geod}caligraphic_K start_POSTSUBSCRIPT italic_g italic_e italic_o italic_d end_POSTSUBSCRIPT (respectively 𝒦horosubscript𝒦𝑜𝑟𝑜\mathcal{K}_{horo}caligraphic_K start_POSTSUBSCRIPT italic_h italic_o italic_r italic_o end_POSTSUBSCRIPT and 𝒦hypersubscript𝒦𝑦𝑝𝑒𝑟\mathcal{K}_{hyper}caligraphic_K start_POSTSUBSCRIPT italic_h italic_y italic_p italic_e italic_r end_POSTSUBSCRIPT) be the graph of geodesics (respectively horocycles and hypercyles) in 2superscript2\mathbb{H}^{2}blackboard_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT where the vertices correspond to geodesics (respectively horocycles and hypercycles) and the edges correspond to disjointness. We aim to describe the automorphism group of these graphs. Let t𝑡titalic_t, x𝑥xitalic_x, y𝑦yitalic_y and z𝑧zitalic_z be four different points on 𝕊1superscript𝕊1\mathbb{S}^{1}blackboard_S start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT considered as 2superscript2\partial\mathbb{H}^{2}∂ blackboard_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT. The sets {t,x}𝑡𝑥\{t,x\}{ italic_t , italic_x } and {y,z}𝑦𝑧\{y,z\}{ italic_y , italic_z } are linked if y𝑦yitalic_y and z𝑧zitalic_z are in different components of 𝕊1{t,x}superscript𝕊1𝑡𝑥\mathbb{S}^{1}-\{t,x\}blackboard_S start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT - { italic_t , italic_x }. A map f:𝕊1𝕊1:𝑓superscript𝕊1superscript𝕊1f:\mathbb{S}^{1}\rightarrow\mathbb{S}^{1}italic_f : blackboard_S start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT → blackboard_S start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT preserves links if it sends linked sets to linked sets. Since every fHomeo(𝕊1)𝑓Homeosuperscript𝕊1f\in\mathrm{Homeo}(\mathbb{S}^{1})italic_f ∈ roman_Homeo ( blackboard_S start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ) is either orientation-preserving or reversing, it turns out that f𝑓fitalic_f is link-preserving. Since a geodesic is completely defined by its endpoints, every element fHomeo(𝕊1)𝑓Homeosuperscript𝕊1f\in\mathrm{Homeo}(\mathbb{S}^{1})italic_f ∈ roman_Homeo ( blackboard_S start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ) induces an automorphism f^^𝑓\widehat{f}over^ start_ARG italic_f end_ARG of 𝒦geodsubscript𝒦𝑔𝑒𝑜𝑑\mathcal{K}_{geod}caligraphic_K start_POSTSUBSCRIPT italic_g italic_e italic_o italic_d end_POSTSUBSCRIPT defined by f^:g:={x,y}{f(x),f(y)}:^𝑓assign𝑔𝑥𝑦maps-to𝑓𝑥𝑓𝑦\widehat{f}:g:=\{x,y\}\mapsto\{f(x),f(y)\}over^ start_ARG italic_f end_ARG : italic_g := { italic_x , italic_y } ↦ { italic_f ( italic_x ) , italic_f ( italic_y ) } where g𝑔gitalic_g is the geodesic defined by x𝑥xitalic_x and y𝑦yitalic_y in 𝕊1superscript𝕊1\mathbb{S}^{1}blackboard_S start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT. So, there is a natural injection i:Homeo(𝕊1)Aut(𝒦goed):𝑖Homeosuperscript𝕊1Autsubscript𝒦𝑔𝑜𝑒𝑑i:\mathrm{Homeo}(\mathbb{S}^{1})\rightarrow\mathrm{Aut}(\mathcal{K}_{goed})italic_i : roman_Homeo ( blackboard_S start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ) → roman_Aut ( caligraphic_K start_POSTSUBSCRIPT italic_g italic_o italic_e italic_d end_POSTSUBSCRIPT ). Unlike geodesics, horocycles and hypercycles are not determined by their endpoints and this implies different behaviors as shown below:

Theorem C.

We consider the graph 𝒦geodsubscript𝒦𝑔𝑒𝑜𝑑\mathcal{K}_{geod}caligraphic_K start_POSTSUBSCRIPT italic_g italic_e italic_o italic_d end_POSTSUBSCRIPT (respectively 𝒦horosubscript𝒦𝑜𝑟𝑜\mathcal{K}_{horo}caligraphic_K start_POSTSUBSCRIPT italic_h italic_o italic_r italic_o end_POSTSUBSCRIPT and 𝒦hypersubscript𝒦𝑦𝑝𝑒𝑟\mathcal{K}_{hyper}caligraphic_K start_POSTSUBSCRIPT italic_h italic_y italic_p italic_e italic_r end_POSTSUBSCRIPT) of geodesics (respectively horocycles and hypercycles).

  • The natural injection i:Homeo(𝕊1)Aut(𝒦geod):𝑖Homeosuperscript𝕊1Autsubscript𝒦𝑔𝑒𝑜𝑑i:\mathrm{Homeo}(\mathbb{S}^{1})\rightarrow\mathrm{Aut}(\mathcal{K}_{geod})italic_i : roman_Homeo ( blackboard_S start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ) → roman_Aut ( caligraphic_K start_POSTSUBSCRIPT italic_g italic_e italic_o italic_d end_POSTSUBSCRIPT ) is an isomorphism. In other words, every automorphisms of 𝒦geodsubscript𝒦𝑔𝑒𝑜𝑑\mathcal{K}_{geod}caligraphic_K start_POSTSUBSCRIPT italic_g italic_e italic_o italic_d end_POSTSUBSCRIPT is induced by a link-preserving homeomorphism.

  • The natural injection i:Isom(2)Aut(𝒦horo):𝑖Isomsuperscript2Autsubscript𝒦𝑜𝑟𝑜i:\mathrm{Isom}(\mathbb{H}^{2})\rightarrow\mathrm{Aut}(\mathcal{K}_{horo})italic_i : roman_Isom ( blackboard_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) → roman_Aut ( caligraphic_K start_POSTSUBSCRIPT italic_h italic_o italic_r italic_o end_POSTSUBSCRIPT ) is an isomorphism and the same result also happens for hypercycles.

C suggests that horocycles and hypercycles are more rigid than geodesics in some sense, since their automorphisms group are smaller than the one for geodesics. This comes from the fact that the 𝒦horosubscript𝒦𝑜𝑟𝑜\mathcal{K}_{horo}caligraphic_K start_POSTSUBSCRIPT italic_h italic_o italic_r italic_o end_POSTSUBSCRIPT (respectively 𝒦hypersubscript𝒦𝑦𝑝𝑒𝑟\mathcal{K}_{hyper}caligraphic_K start_POSTSUBSCRIPT italic_h italic_y italic_p italic_e italic_r end_POSTSUBSCRIPT) is richer than 𝒦geodsubscript𝒦𝑔𝑒𝑜𝑑\mathcal{K}_{geod}caligraphic_K start_POSTSUBSCRIPT italic_g italic_e italic_o italic_d end_POSTSUBSCRIPT since horocycles (respectively hypercycles) can be tangent or can intersect twice in 2superscript2\mathbb{H}^{2}blackboard_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT. These facts endow 𝒦horosubscript𝒦𝑜𝑟𝑜\mathcal{K}_{horo}caligraphic_K start_POSTSUBSCRIPT italic_h italic_o italic_r italic_o end_POSTSUBSCRIPT and 𝒦hypersubscript𝒦𝑦𝑝𝑒𝑟\mathcal{K}_{hyper}caligraphic_K start_POSTSUBSCRIPT italic_h italic_y italic_p italic_e italic_r end_POSTSUBSCRIPT with much more properties.
Every isometry f𝑓fitalic_f induces a map f𝑓\partial{f}∂ italic_f on the boundary: a boundary map. Therefore, the group Isom(2)Isomsuperscript2\partial\mathrm{Isom}(\mathbb{H}^{2})∂ roman_Isom ( blackboard_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) of boundary maps induced by isometries is a subgroup of Homeo(𝕊1)Homeosuperscript𝕊1\mathrm{Homeo}(\mathbb{S}^{1})roman_Homeo ( blackboard_S start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ). Moreover, by postcomposing an element fHomeo(𝕊1)𝑓Homeosuperscript𝕊1f\in\mathrm{Homeo}(\mathbb{S}^{1})italic_f ∈ roman_Homeo ( blackboard_S start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ) by an element in Isom(2)Isomsuperscript2\partial\mathrm{Isom}(\mathbb{H}^{2})∂ roman_Isom ( blackboard_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ), we get an orientation-preserving homeomorphism of 𝕊1superscript𝕊1\mathbb{S}^{1}blackboard_S start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT; and by Thurston earthquake theorem such homeomorphisms are induced by so called earthquake maps on 2superscript2\mathbb{H}^{2}blackboard_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT (see [3] for more details on earthquake maps and Thurston’s earthquake theorem).

Rigidity on horocycles and hypercycles of ℍ² (1)

So, an earthquake map in 2superscript2\mathbb{H}^{2}blackboard_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT induced automorphism on an 𝒦geodsubscript𝒦𝑔𝑒𝑜𝑑\mathcal{K}_{geod}caligraphic_K start_POSTSUBSCRIPT italic_g italic_e italic_o italic_d end_POSTSUBSCRIPT but not on 𝒦horosubscript𝒦𝑜𝑟𝑜\mathcal{K}_{horo}caligraphic_K start_POSTSUBSCRIPT italic_h italic_o italic_r italic_o end_POSTSUBSCRIPT nor on 𝒦hypersubscript𝒦𝑦𝑝𝑒𝑟\mathcal{K}_{hyper}caligraphic_K start_POSTSUBSCRIPT italic_h italic_y italic_p italic_e italic_r end_POSTSUBSCRIPT. One can easily guess that an earthquake is more likely to break tangencies between horocycles (respectively hypercycles) than transverse intersections between geodesics (see Figure1 for an example of a simple earthquake and how it breaks tangencies on horocycles). And this what C tells us. The difference between automorphisms induced by earthquake maps and those induced by isometries is that the latter sends geodesics that intersect at a single point to geodesics with the same property. So every automorphism f^^𝑓\widehat{f}over^ start_ARG italic_f end_ARG of 𝒦geodsubscript𝒦𝑔𝑒𝑜𝑑\mathcal{K}_{geod}caligraphic_K start_POSTSUBSCRIPT italic_g italic_e italic_o italic_d end_POSTSUBSCRIPT, which sends geodesics intersecting at a single point to geodesics of the same type is induced by an isometry.

Overview

The proof of A relies on three facts. First we show that a bijection f:22:𝑓superscript2superscript2f:\mathbb{H}^{2}\rightarrow\mathbb{H}^{2}italic_f : blackboard_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT → blackboard_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT that sends horocycles to horocycles extends to the boundary of 2superscript2\mathbb{H}^{2}blackboard_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT. And then, we prove that after postcomposing with an isometry, one can show that f𝑓fitalic_f fixes pointwise 2superscript2\partial\mathbb{H}^{2}∂ blackboard_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT and the set L:={z2,Im(z)=1}assign𝐿formulae-sequence𝑧superscript2Im𝑧1L:=\{z\in\mathbb{H}^{2},\mathrm{Im}(z)=1\}italic_L := { italic_z ∈ blackboard_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , roman_Im ( italic_z ) = 1 }. The proof ends up by showing that if f𝑓fitalic_f fixes pointwise 2superscript2\partial\mathbb{H}^{2}∂ blackboard_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT and a horizontal line Ly:={z2,Im(z)=y}assignsubscript𝐿𝑦formulae-sequence𝑧superscript2Im𝑧𝑦L_{y}:=\{z\in\mathbb{H}^{2},\mathrm{Im}(z)=y\}italic_L start_POSTSUBSCRIPT italic_y end_POSTSUBSCRIPT := { italic_z ∈ blackboard_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , roman_Im ( italic_z ) = italic_y } then f(z)=z𝑓𝑧𝑧f(z)=zitalic_f ( italic_z ) = italic_z whenever Im(z)yIm𝑧𝑦\mathrm{Im}(z)\neq yroman_Im ( italic_z ) ≠ italic_y. For B we show that a hypercycle-preserving bijection f𝑓fitalic_f has to send geodesic to geodesic and Jeffers theorem implies that it is an isometry.

Finally, we will show C. For the case of geodesics, we show that an automorphism f^^𝑓\widehat{f}over^ start_ARG italic_f end_ARG of 𝒦geodsubscript𝒦𝑔𝑒𝑜𝑑\mathcal{K}_{geod}caligraphic_K start_POSTSUBSCRIPT italic_g italic_e italic_o italic_d end_POSTSUBSCRIPT induced a boundary map f^Homeo(𝕊1)^𝑓Homeosuperscript𝕊1\partial\widehat{f}\in\mathrm{Homeo}(\mathbb{S}^{1})∂ over^ start_ARG italic_f end_ARG ∈ roman_Homeo ( blackboard_S start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ). In the case of horocycles we use postcomposition techniques to show that a given automorphism comes from an isometry. We end the proof for hypercycles by reduction to the horocycles case namely by showing that a non trivial element f^Aut(𝒦hyper)^𝑓Autsubscript𝒦𝑦𝑝𝑒𝑟\widehat{f}\in\mathrm{Aut}(\mathcal{K}_{hyper})over^ start_ARG italic_f end_ARG ∈ roman_Aut ( caligraphic_K start_POSTSUBSCRIPT italic_h italic_y italic_p italic_e italic_r end_POSTSUBSCRIPT ) induces a non trivial element f^Aut(𝒦horo)superscript^𝑓Autsubscript𝒦𝑜𝑟𝑜\widehat{f}^{*}\in\mathrm{Aut}(\mathcal{K}_{horo})over^ start_ARG italic_f end_ARG start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ∈ roman_Aut ( caligraphic_K start_POSTSUBSCRIPT italic_h italic_o italic_r italic_o end_POSTSUBSCRIPT ).

Acknowledgments:

The athours was inspired by Benson Farb talk on reconstruction problems [2]. They would like to thank Dan Margalit for comments on this work. The authors are grateful to Katherine Williams Booth, Ryan Dickmann, Masseye Gaye, Abdou Aziz Diop and Amadou Sy for their comments and the interest shown to this work.

2. Proof of A

The proof of A relies on two big facts. First we show that a horocycle-preserving bijection extends to a bijection on the boundary of 2superscript2\mathbb{H}^{2}blackboard_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT (see Proposition2.2). Then, we show that up to postcomposition by isometries, it fixes pointwise 2superscript2\partial\mathbb{H}^{2}∂ blackboard_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT and L:={z:=x+i}assign𝐿assign𝑧𝑥𝑖L:=\{z:=x+i\}italic_L := { italic_z := italic_x + italic_i } (see Proposition2.5) which helps to end the proof.
We recall some basic facts about horocycles that will be useful for what follows.

  • If x2𝑥superscript2x\in\partial\mathbb{H}^{2}italic_x ∈ ∂ blackboard_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT and z2𝑧superscript2z\in\mathbb{H}^{2}italic_z ∈ blackboard_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT, there is a unique horocycle, denoted hz(x)subscript𝑧𝑥h_{z}(x)italic_h start_POSTSUBSCRIPT italic_z end_POSTSUBSCRIPT ( italic_x ), centered at x𝑥xitalic_x and passing through z𝑧zitalic_z.

  • If z1subscript𝑧1z_{1}italic_z start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and z2subscript𝑧2z_{2}italic_z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT are two distinct points in 2superscript2\mathbb{H}^{2}blackboard_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT, there are exactly two horocycles passing through z1subscript𝑧1z_{1}italic_z start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and z2subscript𝑧2z_{2}italic_z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT.

  • Let z1subscript𝑧1z_{1}italic_z start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT, z2subscript𝑧2z_{2}italic_z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT and z3subscript𝑧3z_{3}italic_z start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT be three distinct points with (z1,z2)2×2subscript𝑧1subscript𝑧2superscript2superscript2(z_{1},z_{2})\in\mathbb{H}^{2}\times\mathbb{H}^{2}( italic_z start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) ∈ blackboard_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT × blackboard_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT and z322subscript𝑧3superscript2superscript2z_{3}\in\mathbb{H}^{2}\cup\partial\mathbb{H}^{2}italic_z start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ∈ blackboard_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ∪ ∂ blackboard_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT. There is at most one horocycle passing through z1subscript𝑧1z_{1}italic_z start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT, z2subscript𝑧2z_{2}italic_z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT and z3subscript𝑧3z_{3}italic_z start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT.

Now, let f:22:𝑓superscript2superscript2f:\mathbb{H}^{2}\rightarrow\mathbb{H}^{2}italic_f : blackboard_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT → blackboard_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT be a bijection such that for all h𝒪𝒪h\in\mathcal{HO}italic_h ∈ caligraphic_H caligraphic_O, f(h)𝒪𝑓𝒪f(h)\in~{}\mathcal{HO}italic_f ( italic_h ) ∈ caligraphic_H caligraphic_O. Two distinct horocycles intersect at most twice and the intersection pattern between horocycles is preserved by f𝑓fitalic_f. We aim to show that f𝑓fitalic_f is an isometry.

Extension of f𝑓fitalic_f to 2superscript2\partial\mathbb{H}^{2}∂ blackboard_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT.

Recall for every p2𝑝superscript2p\in\partial\mathbb{H}^{2}italic_p ∈ ∂ blackboard_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT, 𝒪(p)𝒪𝑝\mathcal{HO}(p)caligraphic_H caligraphic_O ( italic_p ) denotes the set of all horocycles centered at p𝑝pitalic_p. The partial order (1) on 𝒪𝒪\mathcal{HO}caligraphic_H caligraphic_O induces a total order on 𝒪(p)𝒪𝑝\mathcal{HO}(p)caligraphic_H caligraphic_O ( italic_p ). The following equivalence gives another way to see that partial order in terms of intersections:

h1h2h𝒪,hh12hh22.iffsubscript1subscript2formulae-sequencefor-all𝒪subscript1superscript2subscript2superscript2h_{1}\leq h_{2}\iff\forall h\in\mathcal{HO},h\cap h_{1}\cap\mathbb{H}^{2}\neq%\emptyset\implies h\cap h_{2}\cap\mathbb{H}^{2}\neq\emptyset.italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ≤ italic_h start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ⇔ ∀ italic_h ∈ caligraphic_H caligraphic_O , italic_h ∩ italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ∩ blackboard_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ≠ ∅ ⟹ italic_h ∩ italic_h start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ∩ blackboard_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ≠ ∅ .

This follows from the Jordan theorem since h2𝒪(p)subscript2𝒪𝑝h_{2}\in\mathcal{HO}(p)italic_h start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ∈ caligraphic_H caligraphic_O ( italic_p ) separates 22superscript2superscript2\mathbb{H}^{2}\cup\partial\mathbb{H}^{2}blackboard_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ∪ ∂ blackboard_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT into two components one of which contains h1subscript1h_{1}italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT. As a consequence, we have:

Lemma 2.1.

Let h1subscript1h_{1}italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and h2subscript2h_{2}italic_h start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT be two elements of 𝒪(p)𝒪𝑝\mathcal{HO}(p)caligraphic_H caligraphic_O ( italic_p ) such that h1h2subscript1subscript2h_{1}\leq h_{2}italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ≤ italic_h start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT. Then f(h1)𝑓subscript1f(h_{1})italic_f ( italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) and f(h2)𝑓subscript2f(h_{2})italic_f ( italic_h start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) have the same center and the order is preserved on the images: f(h1)f(h2)𝑓subscript1𝑓subscript2f(h_{1})\leq f(h_{2})italic_f ( italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) ≤ italic_f ( italic_h start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ).

Proof.

Assume that h1h2subscript1subscript2h_{1}\leq h_{2}italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ≤ italic_h start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT while f(h1)𝑓subscript1f(h_{1})italic_f ( italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) and f(h2)𝑓subscript2f(h_{2})italic_f ( italic_h start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) have different centers. Then, there exists h𝒪𝒪h\in\mathcal{HO}italic_h ∈ caligraphic_H caligraphic_O such that hf(h1)2𝑓subscript1superscript2h\cap f(h_{1})\cap\mathbb{H}^{2}\neq\emptysetitalic_h ∩ italic_f ( italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) ∩ blackboard_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ≠ ∅ and hf(h2)2=𝑓subscript2superscript2h\cap f(h_{2})\cap\mathbb{H}^{2}=\emptysetitalic_h ∩ italic_f ( italic_h start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) ∩ blackboard_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = ∅. Therefore f1(h)h12superscript𝑓1subscript1superscript2f^{-1}(h)\cap h_{1}\cap\mathbb{H}^{2}\neq\emptysetitalic_f start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( italic_h ) ∩ italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ∩ blackboard_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ≠ ∅ and f1(h)h22=superscript𝑓1subscript2superscript2f^{-1}(h)\cap h_{2}\cap\mathbb{H}^{2}=\emptysetitalic_f start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( italic_h ) ∩ italic_h start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ∩ blackboard_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = ∅ which is absurd. Using the same technique, we can show that the order is preserved.∎

Rigidity on horocycles and hypercycles of ℍ² (3)

Proposition 2.2.

Let f:22:𝑓superscript2superscript2f:\mathbb{H}^{2}\rightarrow\mathbb{H}^{2}italic_f : blackboard_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT → blackboard_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT be a horocycle-preserving bijection. Then f𝑓fitalic_f extends to a well-defined bijection f:22:𝑓superscript2superscript2f:\partial\mathbb{H}^{2}\rightarrow\partial\mathbb{H}^{2}italic_f : ∂ blackboard_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT → ∂ blackboard_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT.

Proof.

Let x2𝑥superscript2x\in\partial\mathbb{H}^{2}italic_x ∈ ∂ blackboard_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT and hz(x)subscript𝑧𝑥h_{z}(x)italic_h start_POSTSUBSCRIPT italic_z end_POSTSUBSCRIPT ( italic_x ) be any horocycle centered at x𝑥xitalic_x. We set f(x):=yassign𝑓𝑥𝑦f(x):=yitalic_f ( italic_x ) := italic_y where y𝑦yitalic_y is the center of f(hz(x))𝑓subscript𝑧𝑥f(h_{z}(x))italic_f ( italic_h start_POSTSUBSCRIPT italic_z end_POSTSUBSCRIPT ( italic_x ) ). By Lemma2.1, f(x)𝑓𝑥f(x)italic_f ( italic_x ) depends only on x𝑥xitalic_x; so it is a well-defined map. Moreover, if f(x1)=f(x2)𝑓subscript𝑥1𝑓subscript𝑥2f(x_{1})=f(x_{2})italic_f ( italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) = italic_f ( italic_x start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ), then f(hz1(x1))𝑓subscriptsubscript𝑧1subscript𝑥1f(h_{z_{1}}(x_{1}))italic_f ( italic_h start_POSTSUBSCRIPT italic_z start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) ) and f(hz2(x2))𝑓subscriptsubscript𝑧2subscript𝑥2f(h_{z_{2}}(x_{2}))italic_f ( italic_h start_POSTSUBSCRIPT italic_z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_x start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) ) have the same center and one can assume that f(hz1(x1))<f(hz2(x2))𝑓subscriptsubscript𝑧1subscript𝑥1𝑓subscriptsubscript𝑧2subscript𝑥2f(h_{z_{1}}(x_{1}))<f(h_{z_{2}}(x_{2}))italic_f ( italic_h start_POSTSUBSCRIPT italic_z start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) ) < italic_f ( italic_h start_POSTSUBSCRIPT italic_z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_x start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) ). Since f𝑓fitalic_f also preserves order, it follows that hz1(x1)<hz2(x2)subscriptsubscript𝑧1subscript𝑥1subscriptsubscript𝑧2subscript𝑥2h_{z_{1}}(x_{1})<h_{z_{2}}(x_{2})italic_h start_POSTSUBSCRIPT italic_z start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) < italic_h start_POSTSUBSCRIPT italic_z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_x start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) which implies that x1=x2subscript𝑥1subscript𝑥2x_{1}=x_{2}italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = italic_x start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT. Thus, f𝑓fitalic_f is a bijection.∎

Postcomposition and fixed sets.

The action of Isom(2)Isomsuperscript2\mathrm{Isom}(\mathbb{H}^{2})roman_Isom ( blackboard_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) on 2superscript2\mathbb{H}^{2}blackboard_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT extends to 2superscript2\partial\mathbb{H}^{2}∂ blackboard_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT and is 2222-transitive on 2superscript2\partial\mathbb{H}^{2}∂ blackboard_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT. In fact, if x𝑥xitalic_x and y𝑦yitalic_y are two distinct points in \mathbb{R}blackboard_R, ϕ:z1zx1yx:italic-ϕmaps-to𝑧1𝑧𝑥1𝑦𝑥\phi:z\mapsto\frac{1}{z-x}-\frac{1}{y-x}italic_ϕ : italic_z ↦ divide start_ARG 1 end_ARG start_ARG italic_z - italic_x end_ARG - divide start_ARG 1 end_ARG start_ARG italic_y - italic_x end_ARG is an isometry of 2superscript2\mathbb{H}^{2}blackboard_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT and ϕ(x)=italic-ϕ𝑥\phi(x)=\inftyitalic_ϕ ( italic_x ) = ∞, ϕ(y)=0italic-ϕ𝑦0\phi(y)=0italic_ϕ ( italic_y ) = 0. So, after postcomposing f𝑓fitalic_f with an isometry, we can assume that f(0)=0𝑓00f(0)=0italic_f ( 0 ) = 0 and f()=𝑓f(\infty)=\inftyitalic_f ( ∞ ) = ∞.

Lemma 2.3.

Let f:22:𝑓superscript2superscript2f:\mathbb{H}^{2}\rightarrow\mathbb{H}^{2}italic_f : blackboard_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT → blackboard_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT be a geodesic-preserving bijection. Then, there exists an isometry j𝑗jitalic_j such that (jf)(n)=n𝑗𝑓𝑛𝑛(j\circ f)(n)=n( italic_j ∘ italic_f ) ( italic_n ) = italic_n for all n𝑛n\in\mathbb{Z}italic_n ∈ blackboard_Z.

Proof.

Since the action of Isom(2)Isomsuperscript2\mathrm{Isom}(\mathbb{H}^{2})roman_Isom ( blackboard_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) is 2-transitive, there exists an isometry ϕ1subscriptitalic-ϕ1\phi_{1}italic_ϕ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT such that ϕ1(f(0))=0subscriptitalic-ϕ1𝑓00\phi_{1}(f(0))=0italic_ϕ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_f ( 0 ) ) = 0 and ϕ1(f())=subscriptitalic-ϕ1𝑓\phi_{1}(f(\infty))=\inftyitalic_ϕ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_f ( ∞ ) ) = ∞. Therefore, ϕ1fsubscriptitalic-ϕ1𝑓\phi_{1}\circ fitalic_ϕ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ∘ italic_f fixes 00 and \infty. Now, let hi()subscript𝑖h_{i}(\infty)italic_h start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( ∞ ) be the horocycle centered at \infty and passing through i𝑖iitalic_i and hi(0)subscript𝑖0h_{i}(0)italic_h start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( 0 ) be the one centered at 00 and passing through i𝑖iitalic_i. Since ϕ1fsubscriptitalic-ϕ1𝑓\phi_{1}\circ fitalic_ϕ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ∘ italic_f fixes 00 and \infty, (ϕ1f)(hi())subscriptitalic-ϕ1𝑓subscript𝑖(\phi_{1}\circ f)(h_{i}(\infty))( italic_ϕ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ∘ italic_f ) ( italic_h start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( ∞ ) ) and (ϕ1f)(hi(0))subscriptitalic-ϕ1𝑓subscript𝑖0(\phi_{1}\circ f)(h_{i}(0))( italic_ϕ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ∘ italic_f ) ( italic_h start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( 0 ) ) are centered at \infty and 00 respectively, and tangent at a point iy𝑖𝑦iyitalic_i italic_y. It follows that ϕ1f(hi())=hiy()subscriptitalic-ϕ1𝑓subscript𝑖subscript𝑖𝑦\phi_{1}\circ f(h_{i}(\infty))=h_{iy}(\infty)italic_ϕ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ∘ italic_f ( italic_h start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( ∞ ) ) = italic_h start_POSTSUBSCRIPT italic_i italic_y end_POSTSUBSCRIPT ( ∞ ) and ϕ1f(hi(0))=hiy(0)subscriptitalic-ϕ1𝑓subscript𝑖0subscript𝑖𝑦0\phi_{1}\circ f(h_{i}(0))=h_{iy}(0)italic_ϕ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ∘ italic_f ( italic_h start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( 0 ) ) = italic_h start_POSTSUBSCRIPT italic_i italic_y end_POSTSUBSCRIPT ( 0 ). Again, by postcomposing with ϕ2:zzy:subscriptitalic-ϕ2𝑧𝑧𝑦\phi_{2}:z\rightarrow\frac{z}{y}italic_ϕ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT : italic_z → divide start_ARG italic_z end_ARG start_ARG italic_y end_ARG we have that f:=ϕ1ϕ2fassignsuperscript𝑓subscriptitalic-ϕ1subscriptitalic-ϕ2𝑓f^{\prime}:=\phi_{1}\circ\phi_{2}\circ fitalic_f start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT := italic_ϕ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ∘ italic_ϕ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ∘ italic_f fixes 00, i𝑖iitalic_i and \infty and thereby we have f(hi(0))=hi(0)superscript𝑓subscript𝑖0subscript𝑖0f^{\prime}(h_{i}(0))=h_{i}(0)italic_f start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_h start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( 0 ) ) = italic_h start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( 0 ) and f(hi())=hi()superscript𝑓subscript𝑖subscript𝑖f^{\prime}(h_{i}(\infty))=h_{i}(\infty)italic_f start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_h start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( ∞ ) ) = italic_h start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( ∞ ).Let (hn)nsubscriptsubscript𝑛𝑛(h_{n})_{n\in\mathbb{Z}}( italic_h start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_n ∈ blackboard_Z end_POSTSUBSCRIPT be the sequence of horocycles where hn:=hn+i(n)assignsubscript𝑛subscript𝑛𝑖𝑛h_{n}:=h_{n+i}(n)italic_h start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT := italic_h start_POSTSUBSCRIPT italic_n + italic_i end_POSTSUBSCRIPT ( italic_n ) is centered at n𝑛nitalic_n and passes through n+i𝑛𝑖n+iitalic_n + italic_i (see Figure 3).

Rigidity on horocycles and hypercycles of ℍ² (4)

Since hi()subscript𝑖h_{i}(\infty)italic_h start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( ∞ ) is fixed by f𝑓fitalic_f and f(h0)=h0superscript𝑓subscript0subscript0f^{\prime}(h_{0})=h_{0}italic_f start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_h start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) = italic_h start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT then f(h1)superscript𝑓subscript1f^{\prime}(h_{1})italic_f start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) is either equal to h1subscript1h_{1}italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT or h1subscript1h_{-1}italic_h start_POSTSUBSCRIPT - 1 end_POSTSUBSCRIPT using the fact that f(h1)superscript𝑓subscript1f^{\prime}(h_{1})italic_f start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) is tangent to h0subscript0h_{0}italic_h start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT and hi()subscript𝑖h_{i}(\infty)italic_h start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( ∞ ). By postcomposing again with a reflection r𝑟ritalic_r along (Oy)𝑂𝑦(Oy)( italic_O italic_y ) we have that h1subscript1h_{1}italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT is fixed setwise by f":=rϕ2ϕ1fassign𝑓"𝑟subscriptitalic-ϕ2subscriptitalic-ϕ1𝑓f":=r\circ\phi_{2}\circ\phi_{1}\circ fitalic_f " := italic_r ∘ italic_ϕ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ∘ italic_ϕ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ∘ italic_f. Therefore hnsubscript𝑛h_{n}italic_h start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT is fixed setwise by f"𝑓"f"italic_f " for all n𝑛n\in\mathbb{Z}italic_n ∈ blackboard_Z since the tangency pattern between the horocylces is preserved by f"𝑓"f"italic_f ". So, jf(m)=m𝑗𝑓𝑚𝑚j\circ f(m)=mitalic_j ∘ italic_f ( italic_m ) = italic_m for all m𝑚m\in\mathbb{Z}italic_m ∈ blackboard_Z; where j:=rϕ2ϕ1assign𝑗𝑟subscriptitalic-ϕ2subscriptitalic-ϕ1j:=r\circ\phi_{2}\circ\phi_{1}italic_j := italic_r ∘ italic_ϕ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ∘ italic_ϕ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT.∎

Now, we can assume without lost of generality that f:22:𝑓superscript2superscript2f:\mathbb{H}^{2}\rightarrow\mathbb{H}^{2}italic_f : blackboard_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT → blackboard_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT is a horocycle-preserving bijection such that fixes pointwise \mathbb{Z}blackboard_Z.
Let 𝒟ksubscript𝒟𝑘\mathcal{D}_{k}caligraphic_D start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT be the sequence of subsets of \mathbb{R}blackboard_R defined by induction as follow:

  • 𝒟0=subscript𝒟0\mathcal{D}_{0}=\mathbb{Z}caligraphic_D start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = blackboard_Z,

  • if 𝒟k:={<x1k<x0k<x1k<}assignsubscript𝒟𝑘subscriptsuperscript𝑥𝑘1subscriptsuperscript𝑥𝑘0superscriptsubscript𝑥1𝑘\mathcal{D}_{k}:=\{\dots<x^{k}_{-1}<x^{k}_{0}<x_{1}^{k}<\dots\}caligraphic_D start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT := { ⋯ < italic_x start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT start_POSTSUBSCRIPT - 1 end_POSTSUBSCRIPT < italic_x start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT < italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT < … } then 𝒟k+1=𝒟k{xnk+1=xn+1k+xnk2,n}subscript𝒟𝑘1subscript𝒟𝑘formulae-sequencesuperscriptsubscript𝑥𝑛𝑘1superscriptsubscript𝑥𝑛1𝑘superscriptsubscript𝑥𝑛𝑘2𝑛\mathcal{D}_{k+1}=\mathcal{D}_{k}\cup\{\displaystyle{x_{n}^{k+1}=\frac{x_{n+1}%^{k}+x_{n}^{k}}{2}},n\in\mathbb{Z}\}caligraphic_D start_POSTSUBSCRIPT italic_k + 1 end_POSTSUBSCRIPT = caligraphic_D start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ∪ { italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_k + 1 end_POSTSUPERSCRIPT = divide start_ARG italic_x start_POSTSUBSCRIPT italic_n + 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT + italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT end_ARG start_ARG 2 end_ARG , italic_n ∈ blackboard_Z }.

Set 𝒟:=k𝒟kassign𝒟subscript𝑘subscript𝒟𝑘\mathcal{D}:=\displaystyle{\cup_{k}\mathcal{D}_{k}}caligraphic_D := ∪ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT caligraphic_D start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT; 𝒟𝒟\mathcal{D}caligraphic_D is the set of dyadic numbers in \mathbb{R}blackboard_R and it is a dense set.

Lemma 2.4.

For all x𝑥xitalic_x in 𝒟𝒟\mathcal{D}caligraphic_D, f(x)=x𝑓𝑥𝑥f(x)=xitalic_f ( italic_x ) = italic_x and the horocycle hx+i(x)subscript𝑥𝑖𝑥h_{x+i}(x)italic_h start_POSTSUBSCRIPT italic_x + italic_i end_POSTSUBSCRIPT ( italic_x ) is fixed setwise by f𝑓fitalic_f.

Proof.

First, f(n)=n𝑓𝑛𝑛f(n)=nitalic_f ( italic_n ) = italic_n for all n𝒟0=𝑛subscript𝒟0n\in\mathcal{D}_{0}=\mathbb{Z}italic_n ∈ caligraphic_D start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = blackboard_Z and every horocycle hn0superscriptsubscript𝑛0h_{n}^{0}italic_h start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT centered at n𝑛nitalic_n with diameter 1111 is fixed setwise.

Now, assume that 𝒟ksubscript𝒟𝑘\mathcal{D}_{k}caligraphic_D start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT is fixed pointwise by f𝑓fitalic_f and every horocycle hnksuperscriptsubscript𝑛𝑘h_{n}^{k}italic_h start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT of diameter 12k1superscript2𝑘\frac{1}{2^{k}}divide start_ARG 1 end_ARG start_ARG 2 start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT end_ARG and centered at xnk𝒟ksuperscriptsubscript𝑥𝑛𝑘subscript𝒟𝑘x_{n}^{k}\in\mathcal{D}_{k}italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT ∈ caligraphic_D start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT is fixed setwise. For every n𝑛n\in\mathbb{Z}italic_n ∈ blackboard_Z,

hnkhn+1k={znk:=xn+1k+xnk2+12k+1i}.superscriptsubscript𝑛𝑘superscriptsubscript𝑛1𝑘assignsuperscriptsubscript𝑧𝑛𝑘superscriptsubscript𝑥𝑛1𝑘superscriptsubscript𝑥𝑛𝑘21superscript2𝑘1𝑖h_{n}^{k}\cap h_{n+1}^{k}=\{z_{n}^{k}:=\frac{x_{n+1}^{k}+x_{n}^{k}}{2}+\frac{1%}{2^{k+1}}i\}.italic_h start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT ∩ italic_h start_POSTSUBSCRIPT italic_n + 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT = { italic_z start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT := divide start_ARG italic_x start_POSTSUBSCRIPT italic_n + 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT + italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT end_ARG start_ARG 2 end_ARG + divide start_ARG 1 end_ARG start_ARG 2 start_POSTSUPERSCRIPT italic_k + 1 end_POSTSUPERSCRIPT end_ARG italic_i } .

Since hnksuperscriptsubscript𝑛𝑘h_{n}^{k}italic_h start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT is a fixed set of f𝑓fitalic_f for all n𝑛nitalic_n, we have f(znk)=znk𝑓superscriptsubscript𝑧𝑛𝑘superscriptsubscript𝑧𝑛𝑘f(z_{n}^{k})=z_{n}^{k}italic_f ( italic_z start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT ) = italic_z start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT for all n𝑛nitalic_n. Therefore, the horizontal Lksubscript𝐿𝑘L_{k}italic_L start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT line passing through all znksuperscriptsubscript𝑧𝑛𝑘z_{n}^{k}italic_z start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT is a fixed set. Let hznk(xnk+xn+1k2)subscriptsuperscriptsubscript𝑧𝑛𝑘superscriptsubscript𝑥𝑛𝑘superscriptsubscript𝑥𝑛1𝑘2h_{z_{n}^{k}}(\frac{x_{n}^{k}+x_{n+1}^{k}}{2})italic_h start_POSTSUBSCRIPT italic_z start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT end_POSTSUBSCRIPT ( divide start_ARG italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT + italic_x start_POSTSUBSCRIPT italic_n + 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT end_ARG start_ARG 2 end_ARG ) be the horocycle passing through znksuperscriptsubscript𝑧𝑛𝑘z_{n}^{k}italic_z start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT and centered at xnk+xn+1k2superscriptsubscript𝑥𝑛𝑘superscriptsubscript𝑥𝑛1𝑘2\frac{x_{n}^{k}+x_{n+1}^{k}}{2}divide start_ARG italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT + italic_x start_POSTSUBSCRIPT italic_n + 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT end_ARG start_ARG 2 end_ARG (see Figure3). That horocycle is tangent to Lksubscript𝐿𝑘L_{k}italic_L start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT at znksuperscriptsubscript𝑧𝑛𝑘z_{n}^{k}italic_z start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT. Since f(znk)=znk𝑓superscriptsubscript𝑧𝑛𝑘superscriptsubscript𝑧𝑛𝑘f(z_{n}^{k})=z_{n}^{k}italic_f ( italic_z start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT ) = italic_z start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT and f(Lk)=Lk𝑓subscript𝐿𝑘subscript𝐿𝑘f(L_{k})=L_{k}italic_f ( italic_L start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) = italic_L start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT, then hznk(xnk+xn+1k2)subscriptsuperscriptsubscript𝑧𝑛𝑘superscriptsubscript𝑥𝑛𝑘superscriptsubscript𝑥𝑛1𝑘2h_{z_{n}^{k}}(\frac{x_{n}^{k}+x_{n+1}^{k}}{2})italic_h start_POSTSUBSCRIPT italic_z start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT end_POSTSUBSCRIPT ( divide start_ARG italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT + italic_x start_POSTSUBSCRIPT italic_n + 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT end_ARG start_ARG 2 end_ARG ) is fixed setwise and this implies that f(xnk+xn+1k2)=xnk+xn+1k2𝑓superscriptsubscript𝑥𝑛𝑘superscriptsubscript𝑥𝑛1𝑘2superscriptsubscript𝑥𝑛𝑘superscriptsubscript𝑥𝑛1𝑘2f(\frac{x_{n}^{k}+x_{n+1}^{k}}{2})=\frac{x_{n}^{k}+x_{n+1}^{k}}{2}italic_f ( divide start_ARG italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT + italic_x start_POSTSUBSCRIPT italic_n + 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT end_ARG start_ARG 2 end_ARG ) = divide start_ARG italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT + italic_x start_POSTSUBSCRIPT italic_n + 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT end_ARG start_ARG 2 end_ARG. So, f(x)=x𝑓𝑥𝑥f(x)=xitalic_f ( italic_x ) = italic_x for x𝒟k+1𝑥subscript𝒟𝑘1x\in\mathcal{D}_{k+1}italic_x ∈ caligraphic_D start_POSTSUBSCRIPT italic_k + 1 end_POSTSUBSCRIPT and the proof follows by induction.

Let x𝒟𝑥𝒟x\in\mathcal{D}italic_x ∈ caligraphic_D and hx+i(x)𝒪subscript𝑥𝑖𝑥𝒪h_{x+i}(x)\in\mathcal{HO}italic_h start_POSTSUBSCRIPT italic_x + italic_i end_POSTSUBSCRIPT ( italic_x ) ∈ caligraphic_H caligraphic_O. Then, f(x)=x𝑓𝑥𝑥f(x)=xitalic_f ( italic_x ) = italic_x and f(x+i)hi()𝑓𝑥𝑖subscript𝑖f(x+i)\in h_{i}(\infty)italic_f ( italic_x + italic_i ) ∈ italic_h start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( ∞ ). Since hi()subscript𝑖h_{i}(\infty)italic_h start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( ∞ ) is tangent to hx+i(x)subscript𝑥𝑖𝑥h_{x+i}(x)italic_h start_POSTSUBSCRIPT italic_x + italic_i end_POSTSUBSCRIPT ( italic_x ), f(hi())=hi()𝑓subscript𝑖subscript𝑖f(h_{i}(\infty))=h_{i}(\infty)italic_f ( italic_h start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( ∞ ) ) = italic_h start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( ∞ ) is tangent to f(hx+i(x))𝑓subscript𝑥𝑖𝑥f(h_{x+i}(x))italic_f ( italic_h start_POSTSUBSCRIPT italic_x + italic_i end_POSTSUBSCRIPT ( italic_x ) ). It implies that f(x+i)=x+i𝑓𝑥𝑖𝑥𝑖f(x+i)=x+iitalic_f ( italic_x + italic_i ) = italic_x + italic_i and hx+i(x)subscript𝑥𝑖𝑥h_{x+i}(x)italic_h start_POSTSUBSCRIPT italic_x + italic_i end_POSTSUBSCRIPT ( italic_x ) is a fixed set of f𝑓fitalic_f.∎

Proposition 2.5.

Let f:22:𝑓superscript2superscript2f:\mathbb{H}^{2}\rightarrow\mathbb{H}^{2}italic_f : blackboard_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT → blackboard_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT be a horocycle-preserving bijection. Then, there exists an isometry j𝑗jitalic_j such that (jf)|2Idevaluated-at𝑗𝑓superscript2Id(j\circ f)|_{\partial\mathbb{H}^{2}}\equiv\mathrm{Id}( italic_j ∘ italic_f ) | start_POSTSUBSCRIPT ∂ blackboard_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT ≡ roman_Id, and jf𝑗𝑓j\circ fitalic_j ∘ italic_f fixes pointwise hi()subscript𝑖h_{i}(\infty)italic_h start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( ∞ ).

Proof.

Lemma2.4 implies that there exist j𝑗jitalic_j such that jf(x)=x𝑗𝑓𝑥𝑥j\circ f(x)=xitalic_j ∘ italic_f ( italic_x ) = italic_x for all x𝒟𝑥𝒟x\in\mathcal{D}italic_x ∈ caligraphic_D. Now, assume that x𝒟𝑥𝒟x\in\mathbb{R}-\mathcal{D}italic_x ∈ blackboard_R - caligraphic_D. Set A:=𝒟((,x1)(x+1,))assign𝐴𝒟𝑥1𝑥1A:=\mathcal{D}\cap((-\infty,x-1)\cup(x+1,\infty))italic_A := caligraphic_D ∩ ( ( - ∞ , italic_x - 1 ) ∪ ( italic_x + 1 , ∞ ) ) and 𝒪Asubscript𝒪𝐴\mathcal{HO}_{A}caligraphic_H caligraphic_O start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT denotes the set of all horocycles centered at a point in A𝐴Aitalic_A and tangent to hi()subscript𝑖h_{i}(\infty)italic_h start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( ∞ ).By Lemma2.4, for all h𝒪Asubscript𝒪𝐴h\in\mathcal{HO}_{A}italic_h ∈ caligraphic_H caligraphic_O start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT, hhitalic_h is a fixed set of jf𝑗𝑓j\circ fitalic_j ∘ italic_f. So, jf(hx+i(x))=hx+i(x)𝑗𝑓subscript𝑥𝑖𝑥subscript𝑥𝑖𝑥j\circ f(h_{x+i}(x))=h_{x+i}(x)italic_j ∘ italic_f ( italic_h start_POSTSUBSCRIPT italic_x + italic_i end_POSTSUBSCRIPT ( italic_x ) ) = italic_h start_POSTSUBSCRIPT italic_x + italic_i end_POSTSUBSCRIPT ( italic_x ) since hx+i(x)subscript𝑥𝑖𝑥h_{x+i}(x)italic_h start_POSTSUBSCRIPT italic_x + italic_i end_POSTSUBSCRIPT ( italic_x ) is pinched between elements of 𝒪Asubscript𝒪𝐴\mathcal{HO}_{A}caligraphic_H caligraphic_O start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT. Hence, jf(x)=x𝑗𝑓𝑥𝑥j\circ f(x)=xitalic_j ∘ italic_f ( italic_x ) = italic_x.

On the other side, we already know that L𝐿Litalic_L is fixed setwise by jf𝑗𝑓j\circ fitalic_j ∘ italic_f. Let z=x+i𝑧𝑥𝑖z=x+iitalic_z = italic_x + italic_i be a point in L𝐿Litalic_L. We have jf(x)=x𝑗𝑓𝑥𝑥j\circ f(x)=xitalic_j ∘ italic_f ( italic_x ) = italic_x, hz(x)=f(hz(x))=hf(z)(x)subscript𝑧𝑥𝑓subscript𝑧𝑥subscript𝑓𝑧𝑥h_{z}(x)=f(h_{z}(x))=h_{f(z)}(x)italic_h start_POSTSUBSCRIPT italic_z end_POSTSUBSCRIPT ( italic_x ) = italic_f ( italic_h start_POSTSUBSCRIPT italic_z end_POSTSUBSCRIPT ( italic_x ) ) = italic_h start_POSTSUBSCRIPT italic_f ( italic_z ) end_POSTSUBSCRIPT ( italic_x ) and f(z)f(L)=L𝑓𝑧𝑓𝐿𝐿f(z)\in f(L)=Litalic_f ( italic_z ) ∈ italic_f ( italic_L ) = italic_L. It implies that jf(z)Lhz(x)={z}𝑗𝑓𝑧𝐿subscript𝑧𝑥𝑧j\circ f(z)\in L\cap h_{z}(x)=\{z\}italic_j ∘ italic_f ( italic_z ) ∈ italic_L ∩ italic_h start_POSTSUBSCRIPT italic_z end_POSTSUBSCRIPT ( italic_x ) = { italic_z } and this achieve the proof.∎

Now, we give the proof of A.

Rigidity on horocycles and hypercycles of ℍ² (5)

Proof of A.

Let f:22:𝑓superscript2superscript2f:\mathbb{H}^{2}\rightarrow\mathbb{H}^{2}italic_f : blackboard_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT → blackboard_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT be a bijection which sends horocycles to horocycles. By Proposition2.2 f𝑓fitalic_f extends to 2superscript2\partial\mathbb{H}^{2}∂ blackboard_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT and by Proposition2.5 there exists jIsom(2)𝑗Isomsuperscript2j\in\mathrm{Isom}(\mathbb{H}^{2})italic_j ∈ roman_Isom ( blackboard_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) such that jf𝑗𝑓j\circ fitalic_j ∘ italic_f fixes \mathbb{R}blackboard_R and L:={z2,Im(z)=1}assign𝐿formulae-sequence𝑧superscript2Im𝑧1L:=\{z\in\mathbb{H}^{2},\mathrm{Im}(z)=~{}1\}italic_L := { italic_z ∈ blackboard_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , roman_Im ( italic_z ) = 1 }.

Let z=x+iy2𝑧𝑥𝑖𝑦superscript2z=x+iy\in\mathbb{H}^{2}italic_z = italic_x + italic_i italic_y ∈ blackboard_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT such that y>1𝑦1y>1italic_y > 1 (the case y<1𝑦1y<1italic_y < 1 follows the same idea). Then hz(x)L:={z0,z1}assignsubscript𝑧𝑥𝐿subscript𝑧0subscript𝑧1h_{z}(x)\cap L:=\{z_{0},z_{1}\}italic_h start_POSTSUBSCRIPT italic_z end_POSTSUBSCRIPT ( italic_x ) ∩ italic_L := { italic_z start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_z start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT }. So z0subscript𝑧0z_{0}italic_z start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT, z1subscript𝑧1z_{1}italic_z start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and x𝑥xitalic_x are fixed point of jf𝑗𝑓j\circ fitalic_j ∘ italic_f. Hence, hz(x)subscript𝑧𝑥h_{z}(x)italic_h start_POSTSUBSCRIPT italic_z end_POSTSUBSCRIPT ( italic_x ) is a fixed set since a horocycle is completely determined by three points. Let zhz(x)superscript𝑧subscript𝑧𝑥z^{\prime}\in h_{z}(x)italic_z start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ∈ italic_h start_POSTSUBSCRIPT italic_z end_POSTSUBSCRIPT ( italic_x ) such that Im(z)<1Imsuperscript𝑧1\mathrm{Im}(z^{\prime})<1roman_Im ( italic_z start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) < 1 and hz,zsubscript𝑧superscript𝑧h_{z,z^{\prime}}italic_h start_POSTSUBSCRIPT italic_z , italic_z start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT the horocylce passing through z𝑧zitalic_z and zsuperscript𝑧z^{\prime}italic_z start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT: jf(hz,z)=hz,z𝑗𝑓subscript𝑧superscript𝑧subscript𝑧superscript𝑧j\circ f(h_{z,z^{\prime}})=h_{z,z^{\prime}}italic_j ∘ italic_f ( italic_h start_POSTSUBSCRIPT italic_z , italic_z start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT ) = italic_h start_POSTSUBSCRIPT italic_z , italic_z start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT. It follows jf(z)hz(x)hz,z={z,z}𝑗𝑓𝑧subscript𝑧𝑥subscript𝑧superscript𝑧𝑧superscript𝑧j\circ f(z)\in h_{z}(x)\cap h_{z,z^{\prime}}=\{z,z^{\prime}\}italic_j ∘ italic_f ( italic_z ) ∈ italic_h start_POSTSUBSCRIPT italic_z end_POSTSUBSCRIPT ( italic_x ) ∩ italic_h start_POSTSUBSCRIPT italic_z , italic_z start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT = { italic_z , italic_z start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT }. If jf(z)=z𝑗𝑓𝑧superscript𝑧j\circ f(z)=z^{\prime}italic_j ∘ italic_f ( italic_z ) = italic_z start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT then the order on the horocycles hz()subscript𝑧h_{z}(\infty)italic_h start_POSTSUBSCRIPT italic_z end_POSTSUBSCRIPT ( ∞ ) and hi()subscript𝑖h_{i}(\infty)italic_h start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( ∞ ) is not preserved under jf𝑗𝑓j\circ fitalic_j ∘ italic_f which is absurd. So, jf(z)=z𝑗𝑓𝑧𝑧j\circ f(z)=zitalic_j ∘ italic_f ( italic_z ) = italic_z. Therefore, jf=id𝑗𝑓idj\circ f=\mathrm{id}italic_j ∘ italic_f = roman_id which achieve the proof.∎

3. Proof of B

Hypercylces intersect in four different ways and we first show that they are all preserved by f𝑓fitalic_f. This implies that hypercycles with same endpoints are mapped to hypercycles with the same property. Finally, we show that a bijection that sends hypercycles to hypercycles also sends geodesics to geodesics which achieves the proof by Jeffers theorem.

A hypercycle is an arc of circle (with endpoints on 2superscript2\partial\mathbb{H}^{2}∂ blackboard_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT) not orthogonal to 2superscript2\partial\mathbb{H}^{2}∂ blackboard_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT or a line in 2superscript2\mathbb{H}^{2}blackboard_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT that is neither vertical nor horizontal. Unlike geodesics, two hypercycles h1subscript1h_{1}italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and h2subscript2h_{2}italic_h start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT may intersect in four different types:

  • Type 1: h1subscript1h_{1}italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and h2subscript2h_{2}italic_h start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT intersect at one point and they are tangent;

  • Type 2: h1subscript1h_{1}italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and h2subscript2h_{2}italic_h start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT intersect at one point with one endpoint in common;

  • Type 3: h1subscript1h_{1}italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and h2subscript2h_{2}italic_h start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT intersect at one point and have different endpoints;

  • Type 4: h1subscript1h_{1}italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and h2subscript2h_{2}italic_h start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT intersect at two points.

Rigidity on horocycles and hypercycles of ℍ² (6)

For the reminder of this section, we set f𝑓fitalic_f to be a bijection that sends hypercycles to hypercylces. It is not hard to see that f𝑓fitalic_f preserves intersections of type 4; that is if two hypercycles intersect twice so will be their images under f𝑓fitalic_f. We first start by showing that the other intersection types are also preserved.

Let h1subscript1h_{1}italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and h2subscript2h_{2}italic_h start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT be two hypercycles tangent at a point p𝑝pitalic_p. The point p𝑝pitalic_p divided h1subscript1h_{1}italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT (respectively h2subscript2h_{2}italic_h start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT) into two sub-arcs I1subscript𝐼1I_{1}italic_I start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and I2subscript𝐼2I_{2}italic_I start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT (respectively J1subscript𝐽1J_{1}italic_J start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and J2subscript𝐽2J_{2}italic_J start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT).

Lemma 3.1.

For all x𝑥xitalic_x in I1subscript𝐼1I_{1}italic_I start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and for all y𝑦yitalic_y in I2subscript𝐼2I_{2}italic_I start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT there exists a hypercycle hhitalic_h passing through x𝑥xitalic_x and y𝑦yitalic_y and disjoint to h2subscript2h_{2}italic_h start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT. Moreover, this property holds only for pairs of hypercycles with intersection of Type 1.

Rigidity on horocycles and hypercycles of ℍ² (10)

Proof.

Let x𝑥xitalic_x and y𝑦yitalic_y be two points in I1subscript𝐼1I_{1}italic_I start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and I2subscript𝐼2I_{2}italic_I start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT respectively. Set O𝑂Oitalic_O to be the Euclidean center of the hypercycle h1subscript1h_{1}italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT, it lies on the euclidean bisector of the segment [x,y]𝑥𝑦[x,y][ italic_x , italic_y ]. Let Osuperscript𝑂O^{\prime}italic_O start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT be a point in that bisector sufficiently close to O𝑂Oitalic_O such that its (Euclidean) distance to [x,y]𝑥𝑦[x,y][ italic_x , italic_y ] is greater than the distance between O𝑂Oitalic_O and [x,y]𝑥𝑦[x,y][ italic_x , italic_y ]. The circle centered at Osuperscript𝑂O^{\prime}italic_O start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT passing through x𝑥xitalic_x and y𝑦yitalic_y defined a hypercycle passing through x𝑥xitalic_x and y𝑦yitalic_y and disjoint from h2subscript2h_{2}italic_h start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT, since p𝑝pitalic_p is a tangent point (see Figure6).

In Type 2 and Type 3 configurations, h2subscript2h_{2}italic_h start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT divided 2superscript2\mathbb{H}^{2}blackboard_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT into two components. Moreover, I1subscript𝐼1I_{1}italic_I start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and I2subscript𝐼2I_{2}italic_I start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT are in different components. So, every hypercycle hhitalic_h from xI1𝑥subscript𝐼1x\in I_{1}italic_x ∈ italic_I start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT to yI2𝑦subscript𝐼2y\in I_{2}italic_y ∈ italic_I start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT crosses h2subscript2h_{2}italic_h start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT.∎

The following is a direct consequence of Lemma3.1:

Corollary 3.2.

The hypercycles h1subscript1h_{1}italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and h2subscript2h_{2}italic_h start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT are tangent if and only if f(h1)𝑓subscript1f(h_{1})italic_f ( italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) and f(h2)𝑓subscript2f(h_{2})italic_f ( italic_h start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) are.

Rigidity on horocycles and hypercycles of ℍ² (11)

We describe a special intersection pattern between three horocycles.

Definition 3.3.

Let h1subscript1h_{1}italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT, h2subscript2h_{2}italic_h start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT and h3subscript3h_{3}italic_h start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT be three hypercycles tangent at a point p𝑝pitalic_p. We say that h2subscript2h_{2}italic_h start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT is between of h1subscript1h_{1}italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and h3subscript3h_{3}italic_h start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT if turning around p𝑝pitalic_p on a small circle starting at h1subscript1h_{1}italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT gives h1h2h3h3h2h1subscript1subscript2subscript3subscript3subscript2subscript1h_{1}-h_{2}-h_{3}-h_{3}-h_{2}-h_{1}italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT - italic_h start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT - italic_h start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT - italic_h start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT - italic_h start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT - italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT as crossing pattern. Then, we say that h3subscript3h_{3}italic_h start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT is below h2subscript2h_{2}italic_h start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT relatively to h1subscript1h_{1}italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT.

Lemma 3.4.

If h2subscript2h_{2}italic_h start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT is between of h1subscript1h_{1}italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and h3subscript3h_{3}italic_h start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT, then f(h2)𝑓subscript2f(h_{2})italic_f ( italic_h start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) is between f(h1)𝑓subscript1f(h_{1})italic_f ( italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) and f(h3)𝑓subscript3f(h_{3})italic_f ( italic_h start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ).

Proof.

Assume that h2subscript2h_{2}italic_h start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT is between h1subscript1h_{1}italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and h3subscript3h_{3}italic_h start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT. Then h2subscript2h_{2}italic_h start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT separates h1subscript1h_{1}italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and h3subscript3h_{3}italic_h start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT and it follows that every hypercycle that intersect both h1subscript1h_{1}italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and h3subscript3h_{3}italic_h start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT intersect h2subscript2h_{2}italic_h start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT. Since f𝑓fitalic_f preserves tangency, f(h1)𝑓subscript1f(h_{1})italic_f ( italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ), f(h2)𝑓subscript2f(h_{2})italic_f ( italic_h start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) and f(h3)𝑓subscript3f(h_{3})italic_f ( italic_h start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ) are tangent at f(p)𝑓𝑝f(p)italic_f ( italic_p ). If f(h2)𝑓subscript2f(h_{2})italic_f ( italic_h start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) is not between f(h1)𝑓subscript1f(h_{1})italic_f ( italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) and f(h3)𝑓subscript3f(h_{3})italic_f ( italic_h start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ), then there exists a hypercycle hhitalic_h that intersects f(h1)𝑓subscript1f(h_{1})italic_f ( italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) and f(h3)𝑓subscript3f(h_{3})italic_f ( italic_h start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ) without intersecting f(h2)𝑓subscript2f(h_{2})italic_f ( italic_h start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ). Therefore, f1(h)superscript𝑓1f^{-1}(h)italic_f start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( italic_h ) is a hypercycle that intersects h1subscript1h_{1}italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and h3subscript3h_{3}italic_h start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT and disjoint from h2subscript2h_{2}italic_h start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT; which is a contradiction. So, f(h2)𝑓subscript2f(h_{2})italic_f ( italic_h start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) is between f(h1)𝑓subscript1f(h_{1})italic_f ( italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) and f(h3)𝑓subscript3f(h_{3})italic_f ( italic_h start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ).∎

Lemma 3.5.

Let h1subscript1h_{1}italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and h2subscript2h_{2}italic_h start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT be two hypercycles that intersect at a point of Type 2. Then, there exists a hypercycle hhitalic_h tangent to h1subscript1h_{1}italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT at p𝑝pitalic_p such that every hypercycle hsuperscripth^{\prime}italic_h start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT below h1subscript1h_{1}italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT relatively to hhitalic_h intersects h2subscript2h_{2}italic_h start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT twice. Moreover, this property does not occur for intersections of Type 3.

Rigidity on horocycles and hypercycles of ℍ² (12)

Proof.

Let h1subscript1h_{1}italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and h2subscript2h_{2}italic_h start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT be two hypercycles that intersect at point p𝑝pitalic_p of Type 2. Let (x1,x2)subscript𝑥1subscript𝑥2(x_{1},x_{2})( italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) and (y1,y2)subscript𝑦1subscript𝑦2(y_{1},y_{2})( italic_y start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_y start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) be the endpoints of h1subscript1h_{1}italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and h2subscript2h_{2}italic_h start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT respectively; with x2=y1subscript𝑥2subscript𝑦1x_{2}=y_{1}italic_x start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = italic_y start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT (since h1subscript1h_{1}italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and h2subscript2h_{2}italic_h start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT have one endpoint in common). Then, let hhitalic_h be a hypercycle tangent to h1subscript1h_{1}italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT at p𝑝pitalic_p and intersecting h2subscript2h_{2}italic_h start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT transversally at p𝑝pitalic_p (see Figure8).

Then, if hsuperscripth^{\prime}italic_h start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT is below h1subscript1h_{1}italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT relatively to hhitalic_h its endpoints (t1,t2)subscript𝑡1subscript𝑡2(t_{1},t_{2})( italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) are in the interval [x1,x2]subscript𝑥1subscript𝑥2[x_{1},x_{2}][ italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ] that does not contained the endpoints of hhitalic_h. It follows that (t1,t2)subscript𝑡1subscript𝑡2(t_{1},t_{2})( italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) and (y1,y2)subscript𝑦1subscript𝑦2(y_{1},y_{2})( italic_y start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_y start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) are not intertwined and hsuperscripth^{\prime}italic_h start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT intersects h2subscript2h_{2}italic_h start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT. So, they intersect twice.

If h1subscript1h_{1}italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and h2subscript2h_{2}italic_h start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT intersect once on Type 3 point, one can see that for every hhitalic_h tangent to h1subscript1h_{1}italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT, there exists hsuperscripth^{\prime}italic_h start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT below h1subscript1h_{1}italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT relatively to hhitalic_h that intersect h2subscript2h_{2}italic_h start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT at a transverse point; this come essentially from the fact that h1subscript1h_{1}italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and h2subscript2h_{2}italic_h start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT have no common endpoints (see Figure9).

Rigidity on horocycles and hypercycles of ℍ² (13)

Corollary 3.6.

If h1subscript1h_{1}italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and h2subscript2h_{2}italic_h start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT intersect at a point of Type 2 (respectively Type 3), so are f(h1)𝑓subscript1f(h_{1})italic_f ( italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) and f(h2)𝑓subscript2f(h_{2})italic_f ( italic_h start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ).

Now that we know f𝑓fitalic_f preserves the intersection types, we show the following:

Proposition 3.7.

If h1subscript1h_{1}italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and h2subscript2h_{2}italic_h start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT have the same endpoints, then f(h1)𝑓subscript1f(h_{1})italic_f ( italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) and f(h2)𝑓subscript2f(h_{2})italic_f ( italic_h start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) have also the same endpoints.

Proof.

Assume that h1subscript1h_{1}italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and h2subscript2h_{2}italic_h start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT have the same endpoints. So every hypercycles hhitalic_h that intersect h1subscript1h_{1}italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT once at point of Type 3 also intersect h2subscript2h_{2}italic_h start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT.

If f(h1)𝑓subscript1f(h_{1})italic_f ( italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) and f(h2)𝑓subscript2f(h_{2})italic_f ( italic_h start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) have at most one endpoint in common, there exists hhitalic_h that intersect f(h1)𝑓subscript1f(h_{1})italic_f ( italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) once at a point of Type 3 such that hhitalic_h is disjoint from f(h2)𝑓subscript2f(h_{2})italic_f ( italic_h start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ). By taking f1(h)superscript𝑓1f^{-1}(h)italic_f start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( italic_h ) we obtain a hypercycle that intersect h1subscript1h_{1}italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT at a point of Type 3 and disjoint from h2subscript2h_{2}italic_h start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT, which is impossible. So, f(h1)𝑓subscript1f(h_{1})italic_f ( italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) and f(h2)𝑓subscript2f(h_{2})italic_f ( italic_h start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) have the same endpoints.∎

Now, we are able to give the proof of B.

Proof B.

Let us show that a hypercycle-preserving bijection f𝑓fitalic_f maps geodesics to geodesics. Let g𝑔gitalic_g be a geodesic in 2superscript2\mathbb{H}^{2}blackboard_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT with endpoints (x1,x2)subscript𝑥1subscript𝑥2(x_{1},x_{2})( italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) and r0𝑟0r\geq 0italic_r ≥ 0. The set of all points at distance r𝑟ritalic_r from g𝑔gitalic_g is a crescent defined by two hypercylces h1subscript1h_{1}italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and h2subscript2h_{2}italic_h start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT with endpoints (x1,x2)subscript𝑥1subscript𝑥2(x_{1},x_{2})( italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ). Then f(h1)𝑓subscript1f(h_{1})italic_f ( italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) and f(h2)𝑓subscript2f(h_{2})italic_f ( italic_h start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) have the same endpoints by Proposition3.7, and let gsuperscript𝑔g^{\prime}italic_g start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT denotes the geodesic with same endpoints as f(h1)𝑓subscript1f(h_{1})italic_f ( italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) and f(h2)𝑓subscript2f(h_{2})italic_f ( italic_h start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ). Assume that there is a point xg𝑥𝑔x\in gitalic_x ∈ italic_g such that f(x)g𝑓𝑥superscript𝑔f(x)\notin g^{\prime}italic_f ( italic_x ) ∉ italic_g start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT. There exists a hypercycle hsuperscripth^{\prime}italic_h start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT passing through f(x)𝑓𝑥f(x)italic_f ( italic_x ) and with same endpoints as f(h1)𝑓subscript1f(h_{1})italic_f ( italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) and f(h2)𝑓subscript2f(h_{2})italic_f ( italic_h start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ). So, f1(h)superscript𝑓1superscriptf^{-1}(h^{\prime})italic_f start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( italic_h start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) is a hypercycle with the same endpoints as g𝑔gitalic_g and intersecting g𝑔gitalic_g at x𝑥xitalic_x, and this is impossible.

So, f(g)=g𝑓𝑔superscript𝑔f(g)=g^{\prime}italic_f ( italic_g ) = italic_g start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT and it follows that f𝑓fitalic_f sends geodesics to geodesics. Using Jeffers Theorem ([4]-Theorem 2), we conclude that f𝑓fitalic_f is an isometry.∎

4. Proof of C

We will prove C for the goedesic case and we will end up with the horocycle and hypercycle cases.

We recall that Thurston earthquake theorem states that every element of Homeo+(𝕊1)superscriptHomeosuperscript𝕊1\mathrm{Homeo}^{+}(\mathbb{S}^{1})roman_Homeo start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT ( blackboard_S start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ) is the boundary map of an earthquake of 2superscript2\mathbb{H}^{2}blackboard_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT. We will use it in our proof together with the followings:

Lemma 4.1.

Let f𝑓fitalic_f be an automorphism of 𝒦geodsubscript𝒦𝑔𝑒𝑜𝑑\mathcal{K}_{geod}caligraphic_K start_POSTSUBSCRIPT italic_g italic_e italic_o italic_d end_POSTSUBSCRIPT; and let g1subscript𝑔1g_{1}italic_g start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT, g2subscript𝑔2g_{2}italic_g start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT be two disjoint geodesics with no common endpoints. Then f(g1)𝑓subscript𝑔1f(g_{1})italic_f ( italic_g start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) and f(g2)𝑓subscript𝑔2f(g_{2})italic_f ( italic_g start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) have no endpoints in common. Equivalently, if g1subscript𝑔1g_{1}italic_g start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT, g2subscript𝑔2g_{2}italic_g start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT are two disjoint geodesics with a common endpoint, so are f(g1)𝑓subscript𝑔1f(g_{1})italic_f ( italic_g start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) and f(g2)𝑓subscript𝑔2f(g_{2})italic_f ( italic_g start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ).

Proof.

Let g1subscript𝑔1g_{1}italic_g start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and g2subscript𝑔2g_{2}italic_g start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT be two disjoint geodesics with no common endpoints –let’s say (x1,x2)subscript𝑥1subscript𝑥2(x_{1},x_{2})( italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) and (y1,y2)subscript𝑦1subscript𝑦2(y_{1},y_{2})( italic_y start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_y start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) respectively– with the following cyclic order x1<x2<y1<y2subscript𝑥1subscript𝑥2subscript𝑦1subscript𝑦2x_{1}<x_{2}<y_{1}<y_{2}italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT < italic_x start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT < italic_y start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT < italic_y start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT. Set h1subscript1h_{1}italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and h2subscript2h_{2}italic_h start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT to be the geodesics defined by (x1,y1)subscript𝑥1subscript𝑦1(x_{1},y_{1})( italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_y start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) and (x2,y2)subscript𝑥2subscript𝑦2(x_{2},y_{2})( italic_x start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_y start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) respectively. It follows that the set {g1,g2,h1,h2}subscript𝑔1subscript𝑔2subscript1subscript2\{g_{1},g_{2},h_{1},h_{2}\}{ italic_g start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_g start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_h start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT } has the following properties (see Figure10):

  • g1g2=subscript𝑔1subscript𝑔2g_{1}\cap g_{2}=\emptysetitalic_g start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ∩ italic_g start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = ∅, h1h2subscript1subscript2h_{1}\cap h_{2}\neq\emptysetitalic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ∩ italic_h start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ≠ ∅ and gihi=subscript𝑔𝑖subscript𝑖g_{i}\cap h_{i}=\emptysetitalic_g start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ∩ italic_h start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = ∅ for i=1,2𝑖12i=1,2italic_i = 1 , 2;

  • for every geodesic g𝑔gitalic_g, ggig(h1h2)𝑔subscript𝑔𝑖𝑔subscript1subscript2g\cap g_{i}\neq\emptyset\implies g\cap(h_{1}\cup h_{2})\neq\emptysetitalic_g ∩ italic_g start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ≠ ∅ ⟹ italic_g ∩ ( italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ∪ italic_h start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) ≠ ∅;

  • for every geodesic g𝑔gitalic_g, |g(g1g2)|=2|gh1|+|gh2|=2𝑔subscript𝑔1subscript𝑔22𝑔subscript1𝑔subscript22|g\cap(g_{1}\cup g_{2})|=2\implies|g\cap h_{1}|+|g\cap h_{2}|=2| italic_g ∩ ( italic_g start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ∪ italic_g start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) | = 2 ⟹ | italic_g ∩ italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT | + | italic_g ∩ italic_h start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT | = 2.

Rigidity on horocycles and hypercycles of ℍ² (14)

Therefore, the set {f(g1),f(g2),f(h1),f(h2)}𝑓subscript𝑔1𝑓subscript𝑔2𝑓subscript1𝑓subscript2\{f(g_{1}),f(g_{2}),f(h_{1}),f(h_{2})\}{ italic_f ( italic_g start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) , italic_f ( italic_g start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) , italic_f ( italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) , italic_f ( italic_h start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) } satisfy the same property. So, for i=1,2𝑖12i=1,2italic_i = 1 , 2 if f(gi)𝑓subscript𝑔𝑖f(g_{i})italic_f ( italic_g start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) has at most one endpoint in common with f(h1)f(h2)𝑓subscript1𝑓subscript2f(h_{1})\cup f(h_{2})italic_f ( italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) ∪ italic_f ( italic_h start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ), then there exists a geodesic g𝑔gitalic_g intersecting f(gi)𝑓subscript𝑔𝑖f(g_{i})italic_f ( italic_g start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) but disjoint from f(h1)f(h2)𝑓subscript1𝑓subscript2f(h_{1})\cup f(h_{2})italic_f ( italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) ∪ italic_f ( italic_h start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ); which is a contradiction. We deduce that for i{1,2}𝑖12i\in\{1,2\}italic_i ∈ { 1 , 2 }, f(gi)𝑓subscript𝑔𝑖f(g_{i})italic_f ( italic_g start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) share one endpoint with f(h1)𝑓subscript1f(h_{1})italic_f ( italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) and the other one with f(h2)𝑓subscript2f(h_{2})italic_f ( italic_h start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ).

Now, if f(g1)𝑓subscript𝑔1f(g_{1})italic_f ( italic_g start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) and f(g2)𝑓subscript𝑔2f(g_{2})italic_f ( italic_g start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) has one endpoint in common, there exists a geodesic g𝑔gitalic_g such that |g(f(g1)f(g2))|=2𝑔𝑓subscript𝑔1𝑓subscript𝑔22|g\cap(f(g_{1})\cup f(g_{2}))|=2| italic_g ∩ ( italic_f ( italic_g start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) ∪ italic_f ( italic_g start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) ) | = 2 but |gf(h1)|+|gf(h2)|=1𝑔𝑓subscript1𝑔𝑓subscript21|g\cap f(h_{1})|+|g\cap f(h_{2})|=1| italic_g ∩ italic_f ( italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) | + | italic_g ∩ italic_f ( italic_h start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) | = 1 which also leads to a contradiction. In conclusion, we proved that f(g1)𝑓subscript𝑔1f(g_{1})italic_f ( italic_g start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) and f(g2)𝑓subscript𝑔2f(g_{2})italic_f ( italic_g start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) have different endpoints.∎

Proof of C: Geodesic case.

We will show that an automorphism of the geodesic graph is induced by an earthquake maps after postcomposing by an isometry.

Let’s show that f^Aut(𝒦geod)^𝑓Autsubscript𝒦𝑔𝑒𝑜𝑑\widehat{f}\in\mathrm{Aut}(\mathcal{K}_{geod})over^ start_ARG italic_f end_ARG ∈ roman_Aut ( caligraphic_K start_POSTSUBSCRIPT italic_g italic_e italic_o italic_d end_POSTSUBSCRIPT ) defined a map on the boundary. Consider x𝕊1𝑥superscript𝕊1x\in\mathbb{S}^{1}italic_x ∈ blackboard_S start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT; g1subscript𝑔1g_{1}italic_g start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and g2subscript𝑔2g_{2}italic_g start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT be two disjoint geodesics with x𝑥xitalic_x as a common endpoint. So, f^(g1)^𝑓subscript𝑔1\widehat{f}(g_{1})over^ start_ARG italic_f end_ARG ( italic_g start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) and f^(g2)^𝑓subscript𝑔2\widehat{f}(g_{2})over^ start_ARG italic_f end_ARG ( italic_g start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) are disjoint. Moreover f^(g1)^𝑓subscript𝑔1\widehat{f}(g_{1})over^ start_ARG italic_f end_ARG ( italic_g start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) and f^(g2)^𝑓subscript𝑔2\widehat{f}(g_{2})over^ start_ARG italic_f end_ARG ( italic_g start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) have a common endpoint y𝑦yitalic_y by Lemma4.1; set f^(x):=yassign^𝑓𝑥𝑦\partial\widehat{f}(x):=y∂ over^ start_ARG italic_f end_ARG ( italic_x ) := italic_y. The map f^^𝑓\partial\widehat{f}∂ over^ start_ARG italic_f end_ARG is well-defined and is a bijection. Let (xn)subscript𝑥𝑛(x_{n})( italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) be an increasing sequence with x𝑥xitalic_x as limit. The sequence gn:=(x,xn)assignsubscript𝑔𝑛𝑥subscript𝑥𝑛g_{n}:=(x,x_{n})italic_g start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT := ( italic_x , italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) of geodesics with endpoints x𝑥xitalic_x and xnsubscript𝑥𝑛x_{n}italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT is such that gnsubscript𝑔𝑛g_{n}italic_g start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT is between gn1subscript𝑔𝑛1g_{n-1}italic_g start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT and gn+1subscript𝑔𝑛1g_{n+1}italic_g start_POSTSUBSCRIPT italic_n + 1 end_POSTSUBSCRIPT, which mean every geodesic g𝑔gitalic_g intersecting gn1subscript𝑔𝑛1g_{n-1}italic_g start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT and gn+1subscript𝑔𝑛1g_{n+1}italic_g start_POSTSUBSCRIPT italic_n + 1 end_POSTSUBSCRIPT also intersect gnsubscript𝑔𝑛g_{n}italic_g start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT. Moreover, there is no geodesic g𝑔gitalic_g with one endpoint equal to x𝑥xitalic_x such that every gnsubscript𝑔𝑛g_{n}italic_g start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT is between g𝑔gitalic_g and g0subscript𝑔0g_{0}italic_g start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT. It follows that hn:=f^(gn)=(f^(x),f^(xn))assignsubscript𝑛^𝑓subscript𝑔𝑛^𝑓𝑥^𝑓subscript𝑥𝑛h_{n}:=\widehat{f}(g_{n})=(\partial\widehat{f}(x),\partial\widehat{f}(x_{n}))italic_h start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT := over^ start_ARG italic_f end_ARG ( italic_g start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) = ( ∂ over^ start_ARG italic_f end_ARG ( italic_x ) , ∂ over^ start_ARG italic_f end_ARG ( italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ) is a sequence of geodesics with a common endpoint such that hnsubscript𝑛h_{n}italic_h start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT is between hn1subscript𝑛1h_{n-1}italic_h start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT and hn+1subscript𝑛1h_{n+1}italic_h start_POSTSUBSCRIPT italic_n + 1 end_POSTSUBSCRIPT. This implies that the sequence (f^(xn))^𝑓subscript𝑥𝑛(\partial\widehat{f}(x_{n}))( ∂ over^ start_ARG italic_f end_ARG ( italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ) is either increasing or decreasing; and let l:=limf^(xn)assign𝑙^𝑓subscript𝑥𝑛l:=\lim\partial\widehat{f}(x_{n})italic_l := roman_lim ∂ over^ start_ARG italic_f end_ARG ( italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ). If lf^(x)𝑙^𝑓𝑥l\neq\partial\widehat{f}(x)italic_l ≠ ∂ over^ start_ARG italic_f end_ARG ( italic_x ), then the geodesic hhitalic_h with endpoint (f^(x),l)^𝑓𝑥𝑙(\partial\widehat{f}(x),l)( ∂ over^ start_ARG italic_f end_ARG ( italic_x ) , italic_l ) is such that hnsubscript𝑛h_{n}italic_h start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT is between h0subscript0h_{0}italic_h start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT and hhitalic_h for all n𝑛nitalic_n, which leads to a contradiction. So, l=f^(x)𝑙^𝑓𝑥l=\partial\widehat{f}(x)italic_l = ∂ over^ start_ARG italic_f end_ARG ( italic_x ) and we have continuity for f^^𝑓\partial\widehat{f}∂ over^ start_ARG italic_f end_ARG. Hence, f^^𝑓\partial\widehat{f}∂ over^ start_ARG italic_f end_ARG is a homeomorphism.Now let’s show that after postcomposing with an isometry, f^^𝑓\partial\widehat{f}∂ over^ start_ARG italic_f end_ARG is orientation-preserving. Since the action of isometries on 𝕊1superscript𝕊1\mathbb{S}^{1}blackboard_S start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT is 3-transitive, after postcomposing with an isometry we can assume that f^^𝑓\partial\widehat{f}∂ over^ start_ARG italic_f end_ARG fixes 11-1- 1, 1111 and \infty. Let x1subscript𝑥1x_{1}italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT, x2subscript𝑥2x_{2}italic_x start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT be two points on 𝕊1[1,1]superscript𝕊111\mathbb{S}^{1}-[-1,1]blackboard_S start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT - [ - 1 , 1 ] such x1<x2subscript𝑥1subscript𝑥2x_{1}<x_{2}italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT < italic_x start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT (where ”<<<” stands for the counterclockwise order on 𝕊1superscript𝕊1\mathbb{S}^{1}blackboard_S start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT) and assume that f^(x2)<f^(x1)^𝑓subscript𝑥2^𝑓subscript𝑥1\partial\widehat{f}(x_{2})<\partial\widehat{f}(x_{1})∂ over^ start_ARG italic_f end_ARG ( italic_x start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) < ∂ over^ start_ARG italic_f end_ARG ( italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ). Then g1:=(1,x1)assignsubscript𝑔11subscript𝑥1g_{1}:=(1,x_{1})italic_g start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT := ( 1 , italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) and g2:=(1,x2)assignsubscript𝑔21subscript𝑥2g_{2}:=(-1,x_{2})italic_g start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT := ( - 1 , italic_x start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) are disjoint but not f^(g1)=(1,f^(x1))^𝑓subscript𝑔11^𝑓subscript𝑥1\widehat{f}(g_{1})=(1,\partial\widehat{f}(x_{1}))over^ start_ARG italic_f end_ARG ( italic_g start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) = ( 1 , ∂ over^ start_ARG italic_f end_ARG ( italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) ) and f^(g2)=(1,f^(x2))^𝑓subscript𝑔21^𝑓subscript𝑥2\widehat{f}(g_{2})=(-1,\partial\widehat{f}(x_{2}))over^ start_ARG italic_f end_ARG ( italic_g start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) = ( - 1 , ∂ over^ start_ARG italic_f end_ARG ( italic_x start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) ), which is absurd since f^^𝑓\widehat{f}over^ start_ARG italic_f end_ARG is an automorphism. The other cases follow the same idea since there exists a segment I{[1,1],[1,],[,1]}𝐼1111I\in\{[-1,1],[1,\infty],[\infty,-1]\}italic_I ∈ { [ - 1 , 1 ] , [ 1 , ∞ ] , [ ∞ , - 1 ] } which does not contained x1subscript𝑥1x_{1}italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and x2subscript𝑥2x_{2}italic_x start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT. Thus f^Homeo+(𝕊1)^𝑓superscriptHomeosuperscript𝕊1\partial\widehat{f}\in\mathrm{Homeo}^{+}(\mathbb{S}^{1})∂ over^ start_ARG italic_f end_ARG ∈ roman_Homeo start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT ( blackboard_S start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ) and by Thurston earthquake theorem, f^Homeo+(𝕊1)^𝑓superscriptHomeosuperscript𝕊1\partial\widehat{f}\in\mathrm{Homeo}^{+}(\mathbb{S}^{1})∂ over^ start_ARG italic_f end_ARG ∈ roman_Homeo start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT ( blackboard_S start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ) is induced by an earthquake map.∎

Let’s introduce some terminology that are going to be useful for the proof in horocycle and hypercycle cases.

Rigidity on horocycles and hypercycles of ℍ² (15)

Rigidity on horocycles and hypercycles of ℍ² (16)

Rigidity on horocycles and hypercycles of ℍ² (17)

Definition 4.2.

A family {ht}t[0,1]subscriptsubscript𝑡𝑡01\{h_{t}\}_{t\in[0,1]}{ italic_h start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT } start_POSTSUBSCRIPT italic_t ∈ [ 0 , 1 ] end_POSTSUBSCRIPT of hypercycles (respectively horocycles) is continuous if:

  • hlsubscript𝑙h_{l}italic_h start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT is between htsubscript𝑡h_{t}italic_h start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT and hssubscript𝑠h_{s}italic_h start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT, i.e, every hypercycles (respectively horocycles) intersecting hssubscript𝑠h_{s}italic_h start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT and htsubscript𝑡h_{t}italic_h start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT intersects hlsubscript𝑙h_{l}italic_h start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT whenever t<l<s𝑡𝑙𝑠t<l<sitalic_t < italic_l < italic_s;

  • if hhitalic_h is a hypercycle (respectively horocycle) between hssubscript𝑠h_{s}italic_h start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT and hlsubscript𝑙h_{l}italic_h start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT, then either hhitalic_h intersects uncountably many htsubscript𝑡h_{t}italic_h start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT’s or there exists t[0,1]𝑡01t\in[0,1]italic_t ∈ [ 0 , 1 ] such that h=htsubscript𝑡h=h_{t}italic_h = italic_h start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT (respectively there exists t[0,1]𝑡01t\in[0,1]italic_t ∈ [ 0 , 1 ] such that h=htsubscript𝑡h=h_{t}italic_h = italic_h start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT). This means that there is no gap in the family {ht}subscript𝑡\{h_{t}\}{ italic_h start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT }.

A continuous family {ht}t[0,1]subscriptsubscript𝑡𝑡01\{h_{t}\}_{t\in[0,1]}{ italic_h start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT } start_POSTSUBSCRIPT italic_t ∈ [ 0 , 1 ] end_POSTSUBSCRIPT exhausts a continuous family {ht}t[0,1]subscriptsubscriptsuperscript𝑡𝑡01\{h^{\prime}_{t}\}_{t\in[0,1]}{ italic_h start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT } start_POSTSUBSCRIPT italic_t ∈ [ 0 , 1 ] end_POSTSUBSCRIPT if for every t[0,1]𝑡01t\in[0,1]italic_t ∈ [ 0 , 1 ], there exists t0[0,1]subscript𝑡001t_{0}\in[0,1]italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ∈ [ 0 , 1 ] such that hssubscript𝑠h_{s}italic_h start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT is between htsubscriptsuperscript𝑡h^{\prime}_{t}italic_h start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT and hlsubscript𝑙h_{l}italic_h start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT for all l>s>t0𝑙𝑠subscript𝑡0l>s>t_{0}italic_l > italic_s > italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT.

By definition, elements in a continuous family of horocycles must have the same center. A horocycle hhitalic_h can be seen as the limit set of a continuous family {ht}subscript𝑡\{h_{t}\}{ italic_h start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT } of hypercycles. Even more, we have:

Lemma 4.3.

A horocyle hhitalic_h is disjoint from a hypercycle hsuperscripth^{\prime}italic_h start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT if and only if there exists a continuous family {ht}subscriptsuperscript𝑡\{h^{\prime}_{t}\}{ italic_h start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT } of hypercycles converging to hhitalic_h and such that h0=hsubscriptsuperscript0superscripth^{\prime}_{0}=h^{\prime}italic_h start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = italic_h start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT.

Proof.

Since isometries acts transitively on horocylces, we can assume that hhitalic_h is centered at \infty and passes through i𝑖iitalic_i. The hypercyles hsuperscripth^{\prime}italic_h start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT is below hhitalic_h and up to a translation, we can assume that hsuperscripth^{\prime}italic_h start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT intersects the y𝑦yitalic_y-axis orthogonally at iea𝑖superscript𝑒𝑎ie^{-a}italic_i italic_e start_POSTSUPERSCRIPT - italic_a end_POSTSUPERSCRIPT with a>0𝑎0a>0italic_a > 0. Let b𝑏bitalic_b and b𝑏-b- italic_b be the endpoints of hsuperscripth^{\prime}italic_h start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT. We defined htsubscript𝑡h_{t}italic_h start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT to be the hypercycle with endpoints {b11t,b11t}superscript𝑏11𝑡superscript𝑏11𝑡\{-b^{\frac{1}{1-t}},b^{\frac{1}{1-t}}\}{ - italic_b start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 1 - italic_t end_ARG end_POSTSUPERSCRIPT , italic_b start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 1 - italic_t end_ARG end_POSTSUPERSCRIPT } and passing through zt:=iea(t1)assignsubscript𝑧𝑡𝑖superscript𝑒𝑎𝑡1z_{t}:=ie^{a(t-1)}italic_z start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT := italic_i italic_e start_POSTSUPERSCRIPT italic_a ( italic_t - 1 ) end_POSTSUPERSCRIPT for t[0,1)𝑡01t\in[0,1)italic_t ∈ [ 0 , 1 ). The set {ht}t[0,1]subscriptsubscript𝑡𝑡01\{h_{t}\}_{t\in[0,1]}{ italic_h start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT } start_POSTSUBSCRIPT italic_t ∈ [ 0 , 1 ] end_POSTSUBSCRIPT is a continuous family of hypercycles that accumulate to the horizontal horocycle hhitalic_h passing through i𝑖iitalic_i.∎

Rigidity on horocycles and hypercycles of ℍ² (18)

Since continuous families of horocycles/hypercycles are defined using intersection properties, it follows that they are preserved under automorphisms, i.e, an automorphism sends a continuous family of horocycles/hypercycles to a continuous family. As consequence, we have:

Lemma 4.4.

Let f^^𝑓\widehat{f}over^ start_ARG italic_f end_ARG be an automorphism of 𝒦horosubscript𝒦𝑜𝑟𝑜\mathcal{K}_{horo}caligraphic_K start_POSTSUBSCRIPT italic_h italic_o italic_r italic_o end_POSTSUBSCRIPT (respectively 𝒦hypersubscript𝒦𝑦𝑝𝑒𝑟\mathcal{K}_{hyper}caligraphic_K start_POSTSUBSCRIPT italic_h italic_y italic_p italic_e italic_r end_POSTSUBSCRIPT):

  1. (1)

    If h1subscript1h_{1}italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and h2subscript2h_{2}italic_h start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT are two tangent horocycles, then f^(h1)^𝑓subscript1\widehat{f}(h_{1})over^ start_ARG italic_f end_ARG ( italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) is tangent to f^(h2)^𝑓subscript2\widehat{f}(h_{2})over^ start_ARG italic_f end_ARG ( italic_h start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ).

  2. (2)

    If h1subscript1h_{1}italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and h2subscript2h_{2}italic_h start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT are two hypercycles with the same endpoints, so are f^(h1)^𝑓subscript1\widehat{f}(h_{1})over^ start_ARG italic_f end_ARG ( italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) and f^(h2)^𝑓subscript2\widehat{f}(h_{2})over^ start_ARG italic_f end_ARG ( italic_h start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ).

Proof.

Let f^^𝑓\widehat{f}over^ start_ARG italic_f end_ARG be an automorphim and assume that h1subscript1h_{1}italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and h2subscript2h_{2}italic_h start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT are two tangent horocycles. So, there exists a continuous family {ht1}subscriptsuperscript1𝑡\{h^{1}_{t}\}{ italic_h start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT } such that h01=h1superscriptsubscript01subscript1h_{0}^{1}=h_{1}italic_h start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT = italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and ht1h2=subscriptsuperscript1𝑡subscript2h^{1}_{t}\cap h_{2}=\emptysetitalic_h start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ∩ italic_h start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = ∅ for all t>0𝑡0t>0italic_t > 0. The set {f^(ht1)}^𝑓subscriptsuperscript1𝑡\{\widehat{f}(h^{1}_{t})\}{ over^ start_ARG italic_f end_ARG ( italic_h start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ) } is a continuous family where f^(h01)=f^(h0)^𝑓subscriptsuperscript10^𝑓subscript0\widehat{f}(h^{1}_{0})=\widehat{f}(h_{0})over^ start_ARG italic_f end_ARG ( italic_h start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) = over^ start_ARG italic_f end_ARG ( italic_h start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) intersects f^(h2)^𝑓subscript2\widehat{f}(h_{2})over^ start_ARG italic_f end_ARG ( italic_h start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) and f^(ht1)^𝑓subscriptsuperscript1𝑡\widehat{f}(h^{1}_{t})over^ start_ARG italic_f end_ARG ( italic_h start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ) is disjoint from h2subscript2h_{2}italic_h start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT for all t>0𝑡0t>0italic_t > 0. Hence, f^(h1)^𝑓subscript1\widehat{f}(h_{1})over^ start_ARG italic_f end_ARG ( italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) is tangent to f^(h2)^𝑓subscript2\widehat{f}(h_{2})over^ start_ARG italic_f end_ARG ( italic_h start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ).

Two hypercycles h1subscript1h_{1}italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and h2subscript2h_{2}italic_h start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT have the same endpoints if and only if there exists a hypercycle h3subscript3h_{3}italic_h start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT between h1subscript1h_{1}italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and h2subscript2h_{2}italic_h start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT which is characterized by an intersection property. Since the property of having the same endpoints is characterized by intersection, it is preserved by automorphisms.∎

Lemma 4.5.

Let {ht}subscript𝑡\{h_{t}\}{ italic_h start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT } be a continuous family of hypercycles converging to a horocycle. Then, we have one of the following situations:

  • the union of all htsubscript𝑡h_{t}italic_h start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT is equal to one of the components of 2h0superscript2subscript0\mathbb{H}^{2}-h_{0}blackboard_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - italic_h start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT;

  • {ht}subscript𝑡\{h_{t}\}{ italic_h start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT } converges to a horocycle or a hypercycle/geodesic.

Moreover, an automorphism of 𝒦hypersubscript𝒦𝑦𝑝𝑒𝑟\mathcal{K}_{hyper}caligraphic_K start_POSTSUBSCRIPT italic_h italic_y italic_p italic_e italic_r end_POSTSUBSCRIPT preserves the convergence type of a family {f^(ht)}^𝑓subscript𝑡\{\widehat{f}(h_{t})\}{ over^ start_ARG italic_f end_ARG ( italic_h start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ) }.

Proof.

Assume that {ht}subscript𝑡\{h_{t}\}{ italic_h start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT } does not foliate any component of 2h0superscript2subscript0\mathbb{H}^{2}-h_{0}blackboard_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - italic_h start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT. Let {xt}superscriptsubscript𝑥𝑡\{x_{t}^{-}\}{ italic_x start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT } and {xt+}superscriptsubscript𝑥𝑡\{x_{t}^{+}\}{ italic_x start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT } be the set of endpoints of the family {ht}subscript𝑡\{h_{t}\}{ italic_h start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT }, i.e, {xt,xt+}superscriptsubscript𝑥𝑡superscriptsubscript𝑥𝑡\{x_{t}^{-},x_{t}^{+}\}{ italic_x start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT , italic_x start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT } are the endpoints of htsubscript𝑡h_{t}italic_h start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT where xt<xt+superscriptsubscript𝑥𝑡superscriptsubscript𝑥𝑡x_{t}^{-}<x_{t}^{+}italic_x start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT < italic_x start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT. By defintion of a continuous family, the set {xt}superscriptsubscript𝑥𝑡\{x_{t}^{-}\}{ italic_x start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT } is bounded from above by any element xt+superscriptsubscript𝑥𝑡x_{t}^{+}italic_x start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT and {xt+}superscriptsubscript𝑥𝑡\{x_{t}^{+}\}{ italic_x start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT } is bounded from below by any xtsuperscriptsubscript𝑥𝑡x_{t}^{-}italic_x start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT; set sup{xt}=msupremumsuperscriptsubscript𝑥𝑡𝑚\sup\{x_{t}^{-}\}=mroman_sup { italic_x start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT } = italic_m and inf{xt+}:=Massigninfimumsuperscriptsubscript𝑥𝑡𝑀\inf\{x_{t}^{+}\}:=Mroman_inf { italic_x start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT } := italic_M. There are two cases depending on whether m=M𝑚𝑀m=Mitalic_m = italic_M or not. If m=M𝑚𝑀m=Mitalic_m = italic_M, there exists a horocycle hhitalic_h centered at m𝑚mitalic_m and disjoint from htsubscript𝑡h_{t}italic_h start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT for all t𝑡titalic_t, since {ht}subscript𝑡\{h_{t}\}{ italic_h start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT } foliates any component of 2h0superscript2subscript0\mathbb{H}^{2}-h_{0}blackboard_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - italic_h start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT. We denote by msubscript𝑚\mathcal{H}_{m}caligraphic_H start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT the set of all horocycles centered at m𝑚mitalic_m and disjoint from htsubscript𝑡h_{t}italic_h start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT for all t𝑡titalic_t and let hsuperscripth^{\prime}italic_h start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT be the one with maximal radius. Since hsuperscripth^{\prime}italic_h start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT has maximal radius, it follows that {ht}subscript𝑡\{h_{t}\}{ italic_h start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT } converges to hsuperscripth^{\prime}italic_h start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT. The case mn𝑚𝑛m\neq nitalic_m ≠ italic_n follows the same idea by taking the set hypersubscript𝑦𝑝𝑒𝑟\mathcal{H}_{hyper}caligraphic_H start_POSTSUBSCRIPT italic_h italic_y italic_p italic_e italic_r end_POSTSUBSCRIPT of all hypercycles disjoint from the htsubscript𝑡h_{t}italic_h start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT’s with endpoints m𝑚mitalic_m and M𝑀Mitalic_M.

Now, assume that {ht}subscript𝑡\{h_{t}\}{ italic_h start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT } is a continuous family of hypercycles and that {ht}subscript𝑡\{h_{t}\}{ italic_h start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT } foliates one of the components of 2h0superscript2subscript0\mathbb{H}^{2}-h_{0}blackboard_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - italic_h start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT. Then, for every hypercycle in the foliated component with the same endpoints as h0subscript0h_{0}italic_h start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT there exist htsubscript𝑡h_{t}italic_h start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT such that hhitalic_h is between h0subscript0h_{0}italic_h start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT and htsubscript𝑡h_{t}italic_h start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT. On the other hand, if {ht}subscript𝑡\{h_{t}\}{ italic_h start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT } is a continuous family admitting a hypercycle hsuperscripth^{\prime}italic_h start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT as a limit, hsuperscripth^{\prime}italic_h start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT is a hypercycle in the component 2h0superscript2subscript0\mathbb{H}^{2}-h_{0}blackboard_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - italic_h start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT containing the htsubscript𝑡h_{t}italic_h start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT’s and hsuperscripth^{\prime}italic_h start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT is disjoint from htsubscript𝑡h_{t}italic_h start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT for all t𝑡titalic_t. Finally, if {ht}subscript𝑡\{h_{t}\}{ italic_h start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT } converges to a horocycle hsuperscripth^{\prime}italic_h start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT there exists a hypercycle with the same endpoints as h0subscript0h_{0}italic_h start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT and intersecting all htsubscript𝑡h_{t}italic_h start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ( take among the ones that intersects the horocycle hsuperscripth^{\prime}italic_h start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT) and there is no hypercycle disjoint from all htsubscript𝑡h_{t}italic_h start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT in the connected component of 2h0superscript2subscript0\mathbb{H}^{2}-h_{0}blackboard_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - italic_h start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT containing all htsubscript𝑡h_{t}italic_h start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT.
Therefore, the three types of convergence are characterized by different types of intersection patterns, so they are preserved by automorphisms.∎

Proof of C: Horocycles/Hypercycles cases.

Let f^^𝑓\widehat{f}over^ start_ARG italic_f end_ARG be in Aut(𝒦horo)Autsubscript𝒦𝑜𝑟𝑜\mathrm{Aut}(\mathcal{K}_{horo})roman_Aut ( caligraphic_K start_POSTSUBSCRIPT italic_h italic_o italic_r italic_o end_POSTSUBSCRIPT ); h0subscript0h_{0}italic_h start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT the horocycle centered at 00 and passing through i𝑖iitalic_i and h1subscript1h_{1}italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT the horizontal horocycle passing through i𝑖iitalic_i. Therefore, f^(h0)^𝑓subscript0\widehat{f}(h_{0})over^ start_ARG italic_f end_ARG ( italic_h start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) and f^(h1)^𝑓subscript1\widehat{f}(h_{1})over^ start_ARG italic_f end_ARG ( italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) are tangent, thanks to Lemma4.4. Since Isom(2)Isomsuperscript2\mathrm{Isom}(\mathbb{H}^{2})roman_Isom ( blackboard_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) is 3-transitive on 𝕊1superscript𝕊1\mathbb{S}^{1}blackboard_S start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT, we can assume that f^(h0)^𝑓subscript0\widehat{f}(h_{0})over^ start_ARG italic_f end_ARG ( italic_h start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) and f^(h1)^𝑓subscript1\widehat{f}(h_{1})over^ start_ARG italic_f end_ARG ( italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) have the same center like h0subscript0h_{0}italic_h start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT and h1subscript1h_{1}italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT, after postcomposing with an isometry. So, f^(h0)^𝑓subscript0\widehat{f}(h_{0})over^ start_ARG italic_f end_ARG ( italic_h start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) and f^(h1)^𝑓subscript1\widehat{f}(h_{1})over^ start_ARG italic_f end_ARG ( italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) are tangent at ia𝑖𝑎iaitalic_i italic_a and again by postcomposing with zzamaps-to𝑧𝑧𝑎z\mapsto\frac{z}{a}italic_z ↦ divide start_ARG italic_z end_ARG start_ARG italic_a end_ARG we have f^(h0)=h0^𝑓subscript0subscript0\widehat{f}(h_{0})=h_{0}over^ start_ARG italic_f end_ARG ( italic_h start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) = italic_h start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT and f^(h1)=h1^𝑓subscript1subscript1\widehat{f}(h_{1})=h_{1}over^ start_ARG italic_f end_ARG ( italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) = italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT. From here, we can use the same argument like in the proof of Lemma2.4 to show that every horocycle centered at x𝑥xitalic_x and passing through x+i𝑥𝑖x+iitalic_x + italic_i is fixed by f^^𝑓\widehat{f}over^ start_ARG italic_f end_ARG.
Now if hhitalic_h is a given horocycle, there exists two horocycles hsuperscripth^{\prime}italic_h start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT and h′′superscript′′h^{\prime\prime}italic_h start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT tangent to h0subscript0h_{0}italic_h start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT and such that hsuperscripth^{\prime}italic_h start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT and h′′superscript′′h^{\prime\prime}italic_h start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT are tangent to hhitalic_h (see Figure13).

Rigidity on horocycles and hypercycles of ℍ² (19)

Since f^^𝑓\widehat{f}over^ start_ARG italic_f end_ARG fixes hsuperscripth^{\prime}italic_h start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT and h′′superscript′′h^{\prime\prime}italic_h start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT, it follows that f^^𝑓\widehat{f}over^ start_ARG italic_f end_ARG fixes hhitalic_h. Thus, after postcomposing with an isometry f^^𝑓\widehat{f}over^ start_ARG italic_f end_ARG acts trivially on 𝒦horosubscript𝒦𝑜𝑟𝑜\mathcal{K}_{horo}caligraphic_K start_POSTSUBSCRIPT italic_h italic_o italic_r italic_o end_POSTSUBSCRIPT and this implies that f^^𝑓\widehat{f}over^ start_ARG italic_f end_ARG is induced by an isometry.

Now, let f^^𝑓\widehat{f}over^ start_ARG italic_f end_ARG be an automorphism of 𝒦hypersubscript𝒦𝑦𝑝𝑒𝑟\mathcal{K}_{hyper}caligraphic_K start_POSTSUBSCRIPT italic_h italic_y italic_p italic_e italic_r end_POSTSUBSCRIPT. Our goal is to show that f^^𝑓\widehat{f}over^ start_ARG italic_f end_ARG induced an automorphism f^superscript^𝑓\widehat{f}^{*}over^ start_ARG italic_f end_ARG start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT of 𝒦horosubscript𝒦𝑜𝑟𝑜\mathcal{K}_{horo}caligraphic_K start_POSTSUBSCRIPT italic_h italic_o italic_r italic_o end_POSTSUBSCRIPT. Let hhitalic_h be an horocycle and {ht}subscript𝑡\{h_{t}\}{ italic_h start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT } be a continuous family of hypercycles with limit hhitalic_h. By Lemma4.5 {f^(ht)}^𝑓subscript𝑡\{\widehat{f}(h_{t})\}{ over^ start_ARG italic_f end_ARG ( italic_h start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ) } is a continuous family which converges to a horocycle hsuperscripth^{\prime}italic_h start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT; we defined f^(h):=hassignsuperscript^𝑓superscript\widehat{f}^{*}(h):=h^{\prime}over^ start_ARG italic_f end_ARG start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_h ) := italic_h start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT. We claim that f^superscript^𝑓\widehat{f}^{*}over^ start_ARG italic_f end_ARG start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT is an automorphism. Consider h1subscript1h_{1}italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and h2subscript2h_{2}italic_h start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT two disjoint horocycles with {ht1}subscriptsuperscript1𝑡\{h^{1}_{t}\}{ italic_h start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT } and {ht2}subscriptsuperscript2𝑡\{h^{2}_{t}\}{ italic_h start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT } two continuous family of hypercycles converging to h1subscript1h_{1}italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and h2subscript2h_{2}italic_h start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT respectively. Then, there exists t0subscript𝑡0t_{0}italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT such for s,lt0𝑠𝑙subscript𝑡0s,l\geq t_{0}italic_s , italic_l ≥ italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT, hs1hl2=subscriptsuperscript1𝑠subscriptsuperscript2𝑙h^{1}_{s}\cap h^{2}_{l}=\emptysetitalic_h start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT ∩ italic_h start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_l end_POSTSUBSCRIPT = ∅. And this implies that f^(h1)superscript^𝑓subscript1\widehat{f}^{*}(h_{1})over^ start_ARG italic_f end_ARG start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) is disjoint from f^(h2)superscript^𝑓subscript2\widehat{f}^{*}(h_{2})over^ start_ARG italic_f end_ARG start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_h start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ), and thus f^superscript^𝑓\widehat{f}^{*}over^ start_ARG italic_f end_ARG start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT is an automorphism of 𝒦horosubscript𝒦𝑜𝑟𝑜\mathcal{K}_{horo}caligraphic_K start_POSTSUBSCRIPT italic_h italic_o italic_r italic_o end_POSTSUBSCRIPT. Let ϕ:Aut(𝒦hyper)Aut(𝒦horo):italic-ϕAutsubscript𝒦𝑦𝑝𝑒𝑟Autsubscript𝒦𝑜𝑟𝑜\phi:\mathrm{Aut}(\mathcal{K}_{hyper})\rightarrow\mathrm{Aut}(\mathcal{K}_{%horo})italic_ϕ : roman_Aut ( caligraphic_K start_POSTSUBSCRIPT italic_h italic_y italic_p italic_e italic_r end_POSTSUBSCRIPT ) → roman_Aut ( caligraphic_K start_POSTSUBSCRIPT italic_h italic_o italic_r italic_o end_POSTSUBSCRIPT ) defined by ϕ(f^):=f^assignitalic-ϕ^𝑓superscript^𝑓\phi(\widehat{f}):=\widehat{f}^{*}italic_ϕ ( over^ start_ARG italic_f end_ARG ) := over^ start_ARG italic_f end_ARG start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT; ϕitalic-ϕ\phiitalic_ϕ is injective. Assume that f^Id^𝑓Id\widehat{f}\neq\mathrm{Id}over^ start_ARG italic_f end_ARG ≠ roman_Id while f^=Idsuperscript^𝑓Id\widehat{f}^{*}=\mathrm{Id}over^ start_ARG italic_f end_ARG start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT = roman_Id. Then, there exists a hypercycle hhitalic_h such that f^(h)h^𝑓\widehat{f}(h)\neq hover^ start_ARG italic_f end_ARG ( italic_h ) ≠ italic_h; and a horocycle h0subscript0h_{0}italic_h start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT disjoint form hhitalic_h such that f^(h)h0^𝑓subscript0\widehat{f}(h)\cap h_{0}\neq\emptysetover^ start_ARG italic_f end_ARG ( italic_h ) ∩ italic_h start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ≠ ∅. Since hhitalic_h is disjoint from h0subscript0h_{0}italic_h start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT, by Lemma4.3 there exists a continuous family {ht}subscript𝑡\{h_{t}\}{ italic_h start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT } containing hhitalic_h such that h0subscript0h_{0}italic_h start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT is its limit set. It follows that {f^(ht)}^𝑓subscript𝑡\{\widehat{f}(h_{t})\}{ over^ start_ARG italic_f end_ARG ( italic_h start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ) } is a continuous family converging to f^(h0)=h0superscript^𝑓subscript0subscript0\widehat{f}^{*}(h_{0})=h_{0}over^ start_ARG italic_f end_ARG start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_h start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) = italic_h start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT; which is absurd since {f^(ht)}^𝑓subscript𝑡\{\widehat{f}(h_{t})\}{ over^ start_ARG italic_f end_ARG ( italic_h start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ) } contains f^(h)^𝑓\widehat{f}(h)over^ start_ARG italic_f end_ARG ( italic_h ) which is not disjoint form h0subscript0h_{0}italic_h start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT. Hence, ϕitalic-ϕ\phiitalic_ϕ is injective and this implies that every element of Aut(𝒦hyper)Autsubscript𝒦𝑦𝑝𝑒𝑟\mathrm{Aut}(\mathcal{K}_{hyper})roman_Aut ( caligraphic_K start_POSTSUBSCRIPT italic_h italic_y italic_p italic_e italic_r end_POSTSUBSCRIPT ) is induced by an isometry, as Aut(𝒦hyper)Autsubscript𝒦𝑦𝑝𝑒𝑟\mathrm{Aut}(\mathcal{K}_{hyper})roman_Aut ( caligraphic_K start_POSTSUBSCRIPT italic_h italic_y italic_p italic_e italic_r end_POSTSUBSCRIPT ) can be seen as a subgroup of Aut(𝒦horo)Autsubscript𝒦𝑜𝑟𝑜\mathrm{Aut}(\mathcal{K}_{horo})roman_Aut ( caligraphic_K start_POSTSUBSCRIPT italic_h italic_o italic_r italic_o end_POSTSUBSCRIPT ).∎

References

  • [1]Alan Beardon, Geometry of discrete groups, Graduate Texts in Mathematics, vol. 91, Springer-Verlag, 1995.
  • [2]B. Farb, Talk: Reconstruction problem, https://www.youtube.com/watch?v=X0XBnKBKSDI
  • [3]J. Hun, Earthquake on the hyperbolic plane in: Handbook of Teichmuller theory. Vol III: European Mathematical Society. IRMA Lectures in Mathematics and Theoretical Physics 17, (2012)
  • [4]J. Jeffers, Lost theorems of geometry, Amer. Math. Monthly, 108 (2000), 800-812.
  • [5] A. Papadopoulos, Rigid actions of the mapping class group, European Mathematical and Theoretical House, 2014

cheikh21.lo@ucad.edu.sn, University Cheikh Anta Diop, Dakar, Senegal
abdoulkarim3.sane@ucad.edu.sn, University Cheikh Anta Diop, Dakar, Senegal

Rigidity on horocycles and hypercycles of ℍ² (2024)
Top Articles
Latest Posts
Article information

Author: Moshe Kshlerin

Last Updated:

Views: 6096

Rating: 4.7 / 5 (57 voted)

Reviews: 88% of readers found this page helpful

Author information

Name: Moshe Kshlerin

Birthday: 1994-01-25

Address: Suite 609 315 Lupita Unions, Ronnieburgh, MI 62697

Phone: +2424755286529

Job: District Education Designer

Hobby: Yoga, Gunsmithing, Singing, 3D printing, Nordic skating, Soapmaking, Juggling

Introduction: My name is Moshe Kshlerin, I am a gleaming, attractive, outstanding, pleasant, delightful, outstanding, famous person who loves writing and wants to share my knowledge and understanding with you.